Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Epidemiol ; 46(3): 894-904, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28082375

ABSTRACT

Background: Smoking is the strongest environmental risk factor for reduced pulmonary function. The genetic component of various pulmonary traits has also been demonstrated, and at least 26 loci have been reproducibly associated with either FEV 1 (forced expiratory volume in 1 second) or FEV 1 /FVC (FEV 1 /forced vital capacity). Although the main effects of smoking and genetic loci are well established, the question of potential gene-by-smoking interaction effect remains unanswered. The aim of the present study was to assess, using a genetic risk score approach, whether the effect of these 26 loci on pulmonary function is influenced by smoking. Methods: We evaluated the interaction between smoking exposure, considered as either ever vs never or pack-years, and a 26-single nucleotide polymorphisms (SNPs) genetic risk score in relation to FEV 1 or FEV 1 /FVC in 50 047 participants of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) and SpiroMeta consortia. Results: We identified an interaction ( ßint = -0.036, 95% confidence interval, -0.040 to -0.032, P = 0.00057) between an unweighted 26 SNP genetic risk score and smoking status (ever/never) on the FEV 1 /FVC ratio. In interpreting this interaction, we showed that the genetic risk of falling below the FEV /FVC threshold used to diagnose chronic obstructive pulmonary disease is higher among ever smokers than among never smokers. A replication analysis in two independent datasets, although not statistically significant, showed a similar trend in the interaction effect. Conclusions: This study highlights the benefit of using genetic risk scores for identifying interactions missed when studying individual SNPs and shows, for the first time, that persons with the highest genetic risk for low FEV 1 /FVC may be more susceptible to the deleterious effects of smoking.


Subject(s)
Forced Expiratory Volume/genetics , Gene-Environment Interaction , Smoking/epidemiology , Smoking/genetics , Vital Capacity/genetics , Europe , Female , Humans , Linear Models , Male , Middle Aged , Multivariate Analysis , Polymorphism, Single Nucleotide , Risk Assessment , Spirometry
2.
PLoS Genet ; 12(2): e1005874, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26910538

ABSTRACT

Vascular endothelial growth factor (VEGF) is an angiogenic and neurotrophic factor, secreted by endothelial cells, known to impact various physiological and disease processes from cancer to cardiovascular disease and to be pharmacologically modifiable. We sought to identify novel loci associated with circulating VEGF levels through a genome-wide association meta-analysis combining data from European-ancestry individuals and using a dense variant map from 1000 genomes imputation panel. Six discovery cohorts including 13,312 samples were analyzed, followed by in-silico and de-novo replication studies including an additional 2,800 individuals. A total of 10 genome-wide significant variants were identified at 7 loci. Four were novel loci (5q14.3, 10q21.3, 16q24.2 and 18q22.3) and the leading variants at these loci were rs114694170 (MEF2C, P = 6.79 x 10(-13)), rs74506613 (JMJD1C, P = 1.17 x 10(-19)), rs4782371 (ZFPM1, P = 1.59 x 10(-9)) and rs2639990 (ZADH2, P = 1.72 x 10(-8)), respectively. We also identified two new independent variants (rs34528081, VEGFA, P = 1.52 x 10(-18); rs7043199, VLDLR-AS1, P = 5.12 x 10(-14)) at the 3 previously identified loci and strengthened the evidence for the four previously identified SNPs (rs6921438, LOC100132354, P = 7.39 x 10(-1467); rs1740073, C6orf223, P = 2.34 x 10(-17); rs6993770, ZFPM2, P = 2.44 x 10(-60); rs2375981, KCNV2, P = 1.48 x 10(-100)). These variants collectively explained up to 52% of the VEGF phenotypic variance. We explored biological links between genes in the associated loci using Ingenuity Pathway Analysis that emphasized their roles in embryonic development and function. Gene set enrichment analysis identified the ERK5 pathway as enriched in genes containing VEGF associated variants. eQTL analysis showed, in three of the identified regions, variants acting as both cis and trans eQTLs for multiple genes. Most of these genes, as well as some of those in the associated loci, were involved in platelet biogenesis and functionality, suggesting the importance of this process in regulation of VEGF levels. This work also provided new insights into the involvement of genes implicated in various angiogenesis related pathologies in determining circulating VEGF levels. The understanding of the molecular mechanisms by which the identified genes affect circulating VEGF levels could be important in the development of novel VEGF-related therapies for such diseases.


Subject(s)
Genetic Loci , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor A/genetics , Chromosomes, Human , Gene Expression , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Vascular Endothelial Growth Factor A/metabolism , White People/genetics
3.
Hum Mol Genet ; 22(7): 1465-72, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23307926

ABSTRACT

Early menopause (EM) affects up to 10% of the female population, reducing reproductive lifespan considerably. Currently, it constitutes the leading cause of infertility in the western world, affecting mainly those women who postpone their first pregnancy beyond the age of 30 years. The genetic aetiology of EM is largely unknown in the majority of cases. We have undertaken a meta-analysis of genome-wide association studies (GWASs) in 3493 EM cases and 13 598 controls from 10 independent studies. No novel genetic variants were discovered, but the 17 variants previously associated with normal age at natural menopause as a quantitative trait (QT) were also associated with EM and primary ovarian insufficiency (POI). Thus, EM has a genetic aetiology which overlaps variation in normal age at menopause and is at least partly explained by the additive effects of the same polygenic variants. The combined effect of the common variants captured by the single nucleotide polymorphism arrays was estimated to account for ∼30% of the variance in EM. The association between the combined 17 variants and the risk of EM was greater than the best validated non-genetic risk factor, smoking.


Subject(s)
Genome-Wide Association Study , Menopause, Premature/genetics , Polymorphism, Single Nucleotide , Case-Control Studies , Female , Gene Frequency , Humans , Primary Ovarian Insufficiency/genetics , Quantitative Trait Loci , Risk
4.
Nature ; 467(7317): 832-8, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20881960

ABSTRACT

Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.


Subject(s)
Body Height/genetics , Genetic Loci/genetics , Genome, Human/genetics , Metabolic Networks and Pathways/genetics , Polymorphism, Single Nucleotide/genetics , Chromosomes, Human, Pair 3/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Multifactorial Inheritance/genetics , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...