Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 876: 162458, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36871743

ABSTRACT

Two synoptic sampling campaigns were conducted to quantify metal loading to Illinois Gulch, a small stream affected by historical mining activities. The first campaign was designed to determine the degree to which Illinois Gulch loses water to the underlying mine workings and to determine the effect of these losses on observed metal loads. The second campaign was designed to evaluate metal loading within Iron Springs, a subwatershed that was responsible for the majority of the metal loading observed during the first campaign. A continuous, constant-rate injection of a conservative tracer was initiated prior to both sampling campaigns and maintained throughout the duration of each study. Tracer concentrations were subsequently used to determine streamflow in gaining stream reaches using the tracer-dilution method, and as an indicator of hydrologic connections between Illinois Gulch and subsurface mine workings. Streamflow losses to the mine workings were quantified during the first campaign using a series of slug additions in which specific conductivity readings were used as a surrogate for tracer concentration. Data from the continuous injections and slug additions were combined to develop spatial streamflow profiles along each study reach. Streamflow estimates were multiplied by observed metal concentrations to yield spatial profiles of metal load that were in turn used to quantify and rank metal sources. Study results indicate that Illinois Gulch loses water to subsurface mine workings and that remedial measures that reduce flow loss (e.g. channel lining) could lessen metal loading from the Iron Springs area. The primary sources of metals to Illinois Gulch include diffuse springs and groundwater, and a draining mine adit. Diffuse sources were determined to have a much larger effect on water quality than other sources that had been the subject of previous investigations due to their visual appearance, supporting the idea that "the truth is in the stream." The overall approach of combining spatially intensive sampling with a rigorous hydrological characterization is applicable to non-mining constituents such as nutrients and pesticides.

2.
Environ Sci Technol ; 46(17): 9324-32, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22897340

ABSTRACT

A unique 30-year streamwater chemistry data set from a mineralized alpine watershed with naturally acidic, metal-rich water displays dissolved concentrations of Zn and other metals of ecological concern increasing by 100-400% (400-2000 µg/L) during low-flow months, when metal concentrations are highest. SO(4) and other major ions show similar increases. A lack of natural or anthropogenic land disturbances in the watershed during the study period suggests that climate change is the underlying cause. Local mean annual and mean summer air temperatures have increased at a rate of 0.2-1.2 °C/decade since the 1980s. Other climatic and hydrologic indices, including stream discharge during low-flow months, do not display statistically significant trends. Consideration of potential specific causal mechanisms driven by rising temperatures suggests that melting of permafrost and falling water tables (from decreased recharge) are probable explanations for the increasing concentrations. The prospect of future widespread increases in dissolved solutes from mineralized watersheds is concerning given likely negative impacts on downstream ecosystems and water resources, and complications created for the establishment of attainable remediation objectives at mine sites.


Subject(s)
Climate Change , Fresh Water/analysis , Metals/analysis , Minerals/analysis , Water Quality , Hydrology , Zinc/analysis
3.
Ecol Appl ; 22(3): 870-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22645817

ABSTRACT

Geologic processes strongly influence water and sediment quality in aquatic ecosystems but rarely are geologic principles incorporated into routine biomonitoring studies. We test if elevated concentrations of metals in water and sediment are restricted to streams downstream of mines or areas that may discharge mine wastes. We surveyed 198 catchments classified as "historically mined" or "unmined," and based on mineral-deposit criteria, to determine whether water and sediment quality were influenced by naturally occurring mineralized rock, by historical mining, or by a combination of both. By accounting for different geologic sources of metals to the environment, we were able to distinguish aquatic ecosystems limited by metals derived from natural processes from those due to mining. Elevated concentrations of metals in water and sediment were not restricted to mined catchments; depauperate aquatic communities were found in unmined catchments. The type and intensity of hydrothermal alteration and the mineral deposit type were important determinants of water and sediment quality as well as the aquatic community in both mined and unmined catchments. This study distinguished the effects of different rock types and geologic sources of metals on ecosystems by incorporating basic geologic processes into reference and baseline site selection, resulting in a refined assessment. Our results indicate that biomonitoring studies should account for natural sources of metals in some geologic environments as contributors to the effect of mines on aquatic ecosystems, recognizing that in mining-impacted drainages there may have been high pre-mining background metal concentrations.


Subject(s)
Ecosystem , Geological Phenomena , Metals/chemistry , Mining , Rivers/chemistry , Water Pollution , Colorado , Environmental Monitoring/methods
4.
Environ Sci Technol ; 46(1): 340-7, 2012 Jan 03.
Article in English | MEDLINE | ID: mdl-22074087

ABSTRACT

A post audit for a reactive transport model used to evaluate acid mine drainage treatment systems is presented herein. The post audit is based on a paired synoptic approach in which hydrogeochemical data are collected at low (existing conditions) and elevated (following treatment) pH. Data obtained under existing, low-pH conditions are used for calibration, and the resultant model is used to predict metal concentrations observed following treatment. Predictions for Al, As, Fe, H(+), and Pb accurately reproduce the observed reduction in dissolved concentrations afforded by the treatment system, and the information provided in regard to standard attainment is also accurate (predictions correctly indicate attainment or nonattainment of water quality standards for 19 of 25 cases). Errors associated with Cd, Cu, and Zn are attributed to misspecification of sorbent mass (precipitated Fe). In addition to these specific results, the post audit provides insight in regard to calibration and sensitivity analysis that is contrary to conventional wisdom. Steps taken during the calibration process to improve simulations of As sorption were ultimately detrimental to the predictive results, for example, and the sensitivity analysis failed to bracket observed metal concentrations.


Subject(s)
Acids/chemistry , Environmental Restoration and Remediation/methods , Mining , Models, Chemical , Rivers/chemistry , Waste Disposal, Fluid , Computer Simulation , Minerals/chemistry , Uncertainty , Water Quality/standards
5.
Environ Sci Technol ; 45(7): 2575-83, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21381683

ABSTRACT

Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes.


Subject(s)
Environmental Monitoring/methods , Inorganic Chemicals/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Ecosystem , Waste Disposal, Fluid , Water Movements
6.
Environ Toxicol Chem ; 29(11): 2432-42, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20853459

ABSTRACT

Two toxic-unit models that estimate the toxicity of trace-metal mixtures to benthic communities were compared. The chronic criterion accumulation ratio (CCAR), a modification of biotic ligand model (BLM) outputs for use as a toxic-unit model, accounts for the modifying and competitive influences of major cations (Ca²(+), Mg²(+), Na(+), K(+), H(+)), anions (HCO3⁻, CO²â»3 ,SO²â»4, Cl⁻, S²â») and dissolved organic carbon (DOC) in determining the free metal ion available for accumulation on the biotic ligand. The cumulative criterion unit (CCU) model, an empirical statistical model of trace-metal toxicity, considers only the ameliorative properties of Ca²(+) and Mg²(+) (hardness) in determining the toxicity of total dissolved trace metals. Differences in the contribution of a metal (e.g., Cu, Cd, Zn) to toxic units as determined by CCAR or CCU were observed and attributed to how each model incorporates the influences of DOC, pH, and alkalinity. Akaike information criteria demonstrate that CCAR is an improved predictor of benthic macroinvertebrate community metrics as compared with CCU. Piecewise models depict great declines (thresholds) in benthic macroinvertebrate communities at CCAR of 1 or more, while negative changes in benthic communities were detected at a CCAR of less than 1. We observed a 7% reduction in total taxa richness and a 43% decrease in Heptageniid abundance between background (CCAR = 0.1) and the threshold of chronic toxicity on the basis of continuous chronic criteria (CCAR = 1). In this first application of the BLM as a toxic-unit model, we found it superior to CCU.


Subject(s)
Aquatic Organisms/drug effects , Environmental Monitoring , Metals/analysis , Models, Biological , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Ligands , Metals/toxicity
7.
Environ Sci Technol ; 44(10): 3876-82, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20397691

ABSTRACT

A primary pathway for emerging contaminants (pharmaceuticals, personal care products, steroids, and hormones) to enter aquatic ecosystems is effluent from sewage treatment plants (STP), and identifying technologies to minimize the amount of these contaminants released is important. Quantifying the flux of these contaminants through STPs is difficult. This study evaluates the behavior of gadolinium, a rare earth element (REE) utilized as a contrasting agent in magnetic resonance imaging (MRI), through four full-scale metropolitan STPs that utilize several biosolids thickening, conditioning, stabilization, and dewatering processing technologies. The organically complexed Gd from MRIs has been shown to be stable in aquatic systems and has the potential to be utilized as a conservative tracer in STP operations to compare to an emerging contaminant of interest. Influent and effluent waters display large enrichments in Gd compared to other REEs. In contrast, most sludge samples from the STPs do not display Gd enrichments, including primary sludges and end-product sludges. The excess Gd appears to remain in the liquid phase throughout the STP operations, but detailed quantification of the input Gd load and residence times of various STP operations is needed to utilize Gd as a conservative tracer.


Subject(s)
Contrast Media/chemistry , Gadolinium/chemistry , Metals, Rare Earth/chemistry , Sewage , Magnetic Resonance Imaging
8.
Environ Sci Technol ; 40(2): 475-86, 2006 Jan 15.
Article in English | MEDLINE | ID: mdl-16468392

ABSTRACT

Identifying the sources and impacts of organic and inorganic contaminants at the watershed scale is a complex challenge because of the multitude of processes occurring in time and space. Investigation of geochemical transformations requires a systematic evaluation of hydrologic, landscape, and anthropogenic factors. The 1160 km2 Boulder Creek Watershed in the Colorado Front Range encompasses a gradient of geology, ecotypes, climate, and urbanization. Streamflow originates primarily as snowmelt and shows substantial annual variation. Water samples were collected along a 70-km transect during spring-runoff and base-flow conditions, and analyzed for major elements, trace elements, bulk organics, organic wastewater contaminants (OWCs), and pesticides. Major-element and trace-element concentrations were low in the headwaters, increased through the urban corridor, and had a step increase downstream from the first major wastewater treatment plant (WWTP). Boron, gadolinium, and lithium were useful inorganic tracers of anthropogenic inputs. Effluent from the WWTP accounted for as much as 75% of the flow in Boulder Creek and was the largest chemical input. Under both hydrological conditions, OWCs and pesticides were detected in Boulder Creek downstream from the WWTP outfall as well as in the headwater region, and loads of anthropogenic-derived contaminants increased as basin population density increased. This report documents a suite of potential endocrine-disrupting chemicals in a reach of stream with native fish populations showing indication of endocrine disruption.


Subject(s)
Water Pollutants, Chemical , Colorado , Geological Phenomena , Geology
9.
Environ Sci Technol ; 39(18): 6923-9, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16201612

ABSTRACT

In many surface waters, sewage treatment plant (STP) effluent is a substantial source of both regulated and unregulated contaminants, including a suite of complex organic compounds derived from household chemicals, pharmaceuticals, and industrial and medical byproducts. In addition, STP effluents in some urban areas have also been shown to have a positive gadolinium (Gd) anomaly in the rare earth element (REE) pattern, with the Gd derived from its use in medical facilities. REE concentrations are relatively easy to measure compared to many organic wastewater compounds and may provide a more widely utilized tracer of STP effluents. To evaluate whether sewage treatment plant-associated Gd is a useful tracer of treatment plant effluent, an investigation of the occurrence, fate, and transport of rare earth elements was undertaken. The rare earth element patterns of four of five STP effluents sampled display positive Gd anomalies. The one site that did not have a Gd anomaly serves a small community, population 1200, with no medical facilities. Biosolids from a large metropolitan STP are not enriched in Gd even though the effluent is, suggesting that a substantial fraction of Gd remains in the aqueous phase through routine treatment plant operation. To evaluate whether STP-derived Gd persists in the fluvial environment, a 14-km study reach downstream of an STP was sampled. Gadolinium anomalies were present at all five downstream sites, but the magnitude of the anomaly decreased. Effluent from STPs is a complex mixture of organic and inorganic constituents, and to better understand the chemical interactions and their effect on REEs, the aqueous speciation was modeled using comprehensive chemical analyses of water samples collected downstream of STP input. These calculations suggest that the REEs will likely remain dissolved because phosphate and carbonate complexes dominate over free REE ions. This study supports the application of Gd anomalies as a useful tracer of urban wastewater.


Subject(s)
Gadolinium/chemistry , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis , Cations , Colorado , Conservation of Natural Resources , Environmental Monitoring , Gadolinium/analysis , Industrial Waste , Ions , Organic Chemicals , Sewage , Silicon Dioxide , Water/analysis , Water Movements , Water Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...