Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(28): 10686-10694, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37409760

ABSTRACT

Polyphenols, prevalent in plants and fungi, are investigated intensively in nutritional and clinical settings because of their beneficial bioactive properties. Due to their complexity, analysis with untargeted approaches is favorable, which typically use high-resolution mass spectrometry (HRMS) rather than low-resolution mass spectrometry (LRMS). Here, the advantages of HRMS were evaluated by thoroughly testing untargeted techniques and available online resources. By applying data-dependent acquisition on real-life urine samples, 27 features were annotated with spectral libraries, 88 with in silico fragmentation, and 113 by MS1 matching with PhytoHub, an online database containing >2000 polyphenols. Moreover, other exogenous and endogenous molecules were screened to measure chemical exposure and potential metabolic effects using the Exposome-Explorer database, further annotating 144 features. Additional polyphenol-related features were explored using various non-targeted analysis techniques including MassQL for glucuronide and sulfate neutral losses, and MetaboAnalyst for statistical analysis. As HRMS typically suffers a sensitivity loss compared to state-of-the-art LRMS used in targeted workflows, the gap between the two instrumental approaches was quantified in three spiked human matrices (urine, serum, plasma) as well as real-life urine samples. Both instruments showed feasible sensitivity, with median limits of detection in the spiked samples being 10-18 ng/mL for HRMS and 4.8-5.8 ng/mL for LRMS. The results demonstrate that, despite its intrinsic limitations, HRMS can readily be used for comprehensively investigating human polyphenol exposure. In the future, this work is expected to allow for linking human health effects with exposure patterns and toxicological mixture effects with other xenobiotics.


Subject(s)
Biological Monitoring , Exposome , Humans , Polyphenols , Mass Spectrometry , Sulfur Oxides
2.
Metabolites ; 12(3)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35323648

ABSTRACT

Metabolomics in human serum samples provide a snapshot of the current metabolic state of an individuum. Metabolite concentrations are influenced by both genetic and environmental factors. Concentrations of certain metabolites can further depend on age, sex, menopause, and diet of study participants. A better understanding of these relationships is pivotal for the planning of metabolomics studies involving human subjects and interpretation of their results. We generated one of the largest single-site targeted metabolomics data sets consisting of 175 quantified metabolites in 6872 study participants. We identified metabolites significantly associated with age, sex, body mass index, diet, and menopausal status. While most of our results agree with previous large-scale studies, we also found novel associations including serotonin as a sex and BMI-related metabolite and sarcosine and C2 carnitine showing significantly higher concentrations in post-menopausal women. Finally, we observed strong associations between higher consumption of food items and certain metabolites, mostly phosphatidylcholines and lysophosphatidylcholines. Most, and the strongest, relationships were found for habitual meat intake while no significant relationships were found for most fruits, vegetables, and grain products. Summarizing, our results reconfirm findings from previous population-based studies on an independent cohort. Together, these findings will ultimately enable the consolidation of sets of metabolites which are related to age, sex, BMI, and menopause as well as to participants' diet.

3.
Metabolites ; 12(2)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35208247

ABSTRACT

Liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics experiments have become increasingly popular because of the wide range of metabolites that can be analyzed and the possibility to measure novel compounds. LC-MS instrumentation and analysis conditions can differ substantially among laboratories and experiments, thus resulting in non-standardized datasets demanding customized annotation workflows. We present an ecosystem of R packages, centered around the MetaboCoreUtils, MetaboAnnotation and CompoundDb packages that together provide a modular infrastructure for the annotation of untargeted metabolomics data. Initial annotation can be performed based on MS1 properties such as m/z and retention times, followed by an MS2-based annotation in which experimental fragment spectra are compared against a reference library. Such reference databases can be created and managed with the CompoundDb package. The ecosystem supports data from a variety of formats, including, but not limited to, MSP, MGF, mzML, mzXML, netCDF as well as MassBank text files and SQL databases. Through its highly customizable functionality, the presented infrastructure allows to build reproducible annotation workflows tailored for and adapted to most untargeted LC-MS-based datasets. All core functionality, which supports base R data types, is exported, also facilitating its re-use in other R packages. Finally, all packages are thoroughly unit-tested and documented and are available on GitHub and through Bioconductor.

SELECTION OF CITATIONS
SEARCH DETAIL
...