Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Front Immunol ; 13: 1035515, 2022.
Article in English | MEDLINE | ID: mdl-36466864

ABSTRACT

Introduction: The present work sought to identify MHC-I-restricted peptide signatures for arbovirus using in silico and in vitro peptide microarray tools. Methods: First, an in-silico analysis of immunogenic epitopes restricted to four of the most prevalent human MHC class-I was performed by identification of MHC affinity score. For that, more than 10,000 peptide sequences from 5 Arbovirus and 8 different viral serotypes, namely Zika (ZIKV), Dengue (DENV serotypes 1-4), Chikungunya (CHIKV), Mayaro (MAYV) and Oropouche (OROV) viruses, in addition to YFV were analyzed. Haplotype HLA-A*02.01 was the dominant human MHC for all arboviruses. Over one thousand HLA-A2 immunogenic peptides were employed to build a comprehensive identity matrix. Intending to assess HLAA*02:01 reactivity of peptides in vitro, a peptide microarray was designed and generated using a dimeric protein containing HLA-A*02:01. Results: The comprehensive identity matrix allowed the identification of only three overlapping peptides between two or more flavivirus sequences, suggesting poor overlapping of virus-specific immunogenic peptides amongst arborviruses. Global analysis of the fluorescence intensity for peptide-HLA-A*02:01 binding indicated a dose-dependent effect in the array. Considering all assessed arboviruses, the number of DENV-derived peptides with HLA-A*02:01 reactivity was the highest. Furthermore, a lower number of YFV-17DD overlapping peptides presented reactivity when compared to non-overlapping peptides. In addition, the assessment of HLA-A*02:01-reactive peptides across virus polyproteins highlighted non-structural proteins as "hot-spots". Data analysis supported these findings showing the presence of major hydrophobic sites in the final segment of non-structural protein 1 throughout 2a (Ns2a) and in nonstructural proteins 2b (Ns2b), 4a (Ns4a) and 4b (Ns4b). Discussion: To our knowledge, these results provide the most comprehensive and detailed snapshot of the immunodominant peptide signature for arbovirus with MHC-class I restriction, which may bring insight into the design of future virus-specific vaccines to arboviruses and for vaccination protocols in highly endemic areas.


Subject(s)
Arboviruses , Zika Virus Infection , Zika Virus , Humans , Epitopes , HLA-A2 Antigen , Antigens, Viral
2.
Commun Med (Lond) ; 2: 41, 2022.
Article in English | MEDLINE | ID: mdl-35603276

ABSTRACT

Background: The emergence of the Brazilian variant of concern, Gamma lineage (P.1), impacted the epidemiological profile of COVID-19 cases due to its higher transmissibility rate and immune evasion ability. Methods: We sequenced 305 SARS-CoV-2 whole-genomes and performed phylogenetic analyses to identify introduction events and the circulating lineages. Additionally, we use epidemiological data of COVID-19 cases, severe cases, and deaths to measure the impact of vaccination coverage and mortality risk. Results: Here we show that Gamma introduction in São José do Rio Preto, São Paulo, Brazil, was followed by the displacement of seven circulating SARS-CoV-2 variants and a rapid increase in prevalence two months after its first detection in January 2021. Moreover, Gamma variant is associated with increased mortality risk and severity of COVID-19 cases in younger age groups, which corresponds to the unvaccinated population at the time. Conclusions: Our findings highlight the beneficial effects of vaccination indicated by a pronounced reduction of severe cases and deaths in immunized individuals, reinforcing the need for rapid and massive vaccination.

3.
J Clin Virol ; 121: 104208, 2019 12.
Article in English | MEDLINE | ID: mdl-31707203

ABSTRACT

BACKGROUND: In recent years real­time reverse transcription polymerase chain reaction (real-time RT-PCR) has become a leading technique for nucleic acid detection and quantification of flaviviruses, including Dengue virus (DENV). Trioplex real-time RT-PCR has the advantages of providing the concurrent detection of Zika virus (ZIKV), DENV, and Chikungunya virus (CHIKV) RNA in human serum. OBJECTIVE: This study sought to compare the sensitivity and specificity of the Trioplex real-time RT-PCR assay to those provided by CDC DENV TaqMan® RT-qPCR assay and conventional PCR when used for DENV detection in the context of a dengue epidemic. STUDY DESIGN: We analyzed 1656 serum samples from symptomatic patients with acute febrile disease for 5 days less between December 2018 and May 2019. The samples were tested using the various PCR-based assays. RESULTS: Of the 1656 serum samples analyzed, 713 (43%) were laboratory-confirmed as arboviruses: 99.86% (712/713) were confirmed as DENV and 0.14% (1/713) were confirmed as ZIKV. Next, 590 samples were selected, and of these, 331 samples (56.1%) were determined to be positive (Ct < 38) and 259 samples (43.9%) were determined to be negative (Ct > 38) using the Trioplex real-time RT-PCR assay. The multiplex method found that the test exhibits 95% sensitivity and 100% specificity. CONCLUSION: This evaluation demonstrates the capacity of the Trioplex real-time RT-PCR assay to detect DENV at a high sensitivity and specificity in a geographic area with a current dengue outbreak and a lower co-circulation of other arboviruses - such as ZIKV and CHIKV, and the results prove it´s applicability as clinical screening test that can serve as a confirmatory test.


Subject(s)
Dengue/diagnosis , Disease Outbreaks , Molecular Diagnostic Techniques/methods , Multiplex Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Brazil/epidemiology , Centers for Disease Control and Prevention, U.S. , Chikungunya Fever/blood , Chikungunya Fever/diagnosis , Chikungunya virus , Dengue/blood , Dengue/epidemiology , Dengue Virus , Fever/epidemiology , Fever/virology , Humans , Reproducibility of Results , Sensitivity and Specificity , United States , Zika Virus , Zika Virus Infection/blood , Zika Virus Infection/diagnosis
4.
Rev. bras. parasitol. vet ; 27(2): 191-202, Apr.-June 2018. tab, graf
Article in English | LILACS | ID: biblio-959181

ABSTRACT

Abstract Vaccination against Anaplasma marginale has been considered an important control strategy for bovine anaplasmosis. Recently, mice immunized with rMSP1 a linked to carbon nanotubes (MWNT) showed significant immune responses, generating a new possibility for use of an inactivated vaccine. The objective of this study was to investigate the cellular and humoral responses in calves immunized with MWNT+rMSP1a , associated with inactivated vaccine of A. marginale produced in vitro, and evaluate the toxic effects of the MWNT on renal and hepatic function. rMSP1a was covalently linked to MWNT. Inactivated vaccine (AmUFMG2) was produced by cultivating A. marginale in IDE8 cells. Twenty-four Holstein calves were divided (four groups) and immunized subcutaneously with PBS and non-carboxylated MWNT (control, G1), AmUFMG2 (G2), MWNT+rMSP1a (G3), and AmUFMG2 with MWNT+rMSP1a (G4). Blood samples were collected for total leukocyte counts, biochemical profiling and evaluation of the cellular and humoral response. Immunization with MWNT+rMSP1a induced increase in the total number of leukocytes, NK cells, in the lymphocyte populations and higher levels of antibodies compared to calves immunized only with AmUFMG2. Furthermore, MWNT did not induce changes in the biochemical profile. These data indicate that MWNT+rMSP1a were able to induce the immune responses more efficiently than AmUFMG2 alone, without generating toxicity.


Resumo Vacinação contra Anaplasma marginale tem sido considerada uma importante estratégia de controle da anaplasmose bovina. Recentemente, camundongos imunizados com rMSP1a funcionalizada à nanotubos de carbono (MWNT) apresentaram resposta imune significante, gerando nova possibilidade para o uso da vacina inativada. O objetivo desse estudo foi investigar a resposta celular e humoral em bezerros imunizados com MWNT+rMSP1a, associado com a vacina inativada de A. marginale produzida in vitro, e avaliar os efeitos tóxicos dos MWNT nas funções hepática e renal. rMSP1 a foi ligada covalentemente aos MWNT. Vacina inativada (AmUFMG2) foi produzida através do cultivo de A. marginale em células IDE8. Vinte e quatro bezerros Holandeses foram divididos (quatro grupos) e imunizados subcutaneamente com: PBS e MWNT não-carboxilados (controle, G1), AmUFMG2 (G2), MWNT+rMSP1 a (G3), e AmUFMG2 com MWNT+rMSP1a (G4). Amostras de sangue foram coletadas para contagem de leucócitos, perfil bioquímico e avaliação da resposta celular e humoral. Imunização com MWNT+rMSP1a induziu aumento dos leucócitos totais, células NK, na população de linfócitos e altos níveis de anticorpos comparado com animais imunizados apenas com AmUFMG2. Além disso, MWNT não induziu alterações no perfil bioquímico. Esses dados indicam que MWNT+rMSP1a foram capazes de induzir eficientemente a resposta imune comparado com AmUFMG2 sozinho, sem gerar toxicidade.


Subject(s)
Animals , Cattle , Drug Carriers , Bacterial Vaccines/immunology , Cattle Diseases/microbiology , Cattle Diseases/prevention & control , Nanotubes, Carbon , Anaplasma marginale/immunology , Immunogenicity, Vaccine , Anaplasmosis/prevention & control , Immunity, Humoral , Immunity, Cellular
5.
Rev Bras Parasitol Vet ; 27(2): 191-202, 2018.
Article in English | MEDLINE | ID: mdl-29846449

ABSTRACT

Vaccination against Anaplasma marginale has been considered an important control strategy for bovine anaplasmosis. Recently, mice immunized with rMSP1 a linked to carbon nanotubes (MWNT) showed significant immune responses, generating a new possibility for use of an inactivated vaccine. The objective of this study was to investigate the cellular and humoral responses in calves immunized with MWNT+rMSP1a , associated with inactivated vaccine of A. marginale produced in vitro, and evaluate the toxic effects of the MWNT on renal and hepatic function. rMSP1a was covalently linked to MWNT. Inactivated vaccine (AmUFMG2) was produced by cultivating A. marginale in IDE8 cells. Twenty-four Holstein calves were divided (four groups) and immunized subcutaneously with PBS and non-carboxylated MWNT (control, G1), AmUFMG2 (G2), MWNT+rMSP1a (G3), and AmUFMG2 with MWNT+rMSP1a (G4). Blood samples were collected for total leukocyte counts, biochemical profiling and evaluation of the cellular and humoral response. Immunization with MWNT+rMSP1a induced increase in the total number of leukocytes, NK cells, in the lymphocyte populations and higher levels of antibodies compared to calves immunized only with AmUFMG2. Furthermore, MWNT did not induce changes in the biochemical profile. These data indicate that MWNT+rMSP1a were able to induce the immune responses more efficiently than AmUFMG2 alone, without generating toxicity.


Subject(s)
Anaplasma marginale/immunology , Anaplasmosis/prevention & control , Bacterial Vaccines/immunology , Cattle Diseases/microbiology , Cattle Diseases/prevention & control , Drug Carriers , Immunogenicity, Vaccine , Nanotubes, Carbon , Animals , Cattle , Immunity, Cellular , Immunity, Humoral
6.
Vaccine ; 34(50): 6120-6122, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27817963

ABSTRACT

Dengue is no longer restricted to tropical developing countries, but is now a major global public health problem. Despite the recent license approval of the CYD-TDV vaccine in some countries, efforts to develop a more efficient vaccine against Dengue virus (DENV) continue. Herein, we evaluate the immunogenicity and level of protection of two potential vaccines against DENV based on recombinant modified vaccinia virus Ankara (rMVA). The vaccine addressing the Envelope protein from DENV serotype 3 to the endoplasmic reticulum elicited neutralizing antibodies titers which correlate with protection, and also confers protection upon challenge in a mouse model. Our results support the development of a tetravalent dengue vaccine with the further construction of rMVAs expressing proteins from the other DENV serotypes.


Subject(s)
Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Drug Carriers , Encephalitis, Viral/prevention & control , Vaccinia virus/genetics , Viral Envelope Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Dengue Vaccines/administration & dosage , Dengue Vaccines/genetics , Dengue Virus/genetics , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Viral Envelope Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...