Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 24(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38475175

ABSTRACT

Large-scale crowd phenomena are complex to model because the behaviour of pedestrians needs to be described at both strategic, tactical, and operational levels and is impacted by the density of the crowd. Microscopic models manage to mimic the dynamics at low densities, whereas mesoscopic models achieve better performances in dense situations. This paper proposes and evaluates a novel agent-based model to enable agents to dynamically change their operational model based on local density. The ability to combine microscopic and mesoscopic models for multi-scale simulation is studied through a use case of pedestrians at the Festival of Lights, Lyon, France. Pedestrian outflow data are extracted from video recordings of exiting crowds at the festival. The hybrid model is calibrated and validated using a genetic algorithm that optimises the match between simulated and observed outflow data. Additionally, a local sensitivity analysis is then conducted to identify the most sensitive parameters in the model. Finally, the performance of the hybrid model is compared to different models in terms of density map and computation time. The results demonstrate that the hybrid model has the capacity to effectively simulate pedestrians across varied density scenarios while optimising computational performance compared to other models.

2.
PLoS One ; 15(4): e0231778, 2020.
Article in English | MEDLINE | ID: mdl-32330173

ABSTRACT

Air pollution with PM2.5 (particulate matter smaller than 2.5 micro-metres in diameter) is a major health hazard in many cities worldwide, but since measuring instruments have traditionally been expensive, monitoring sites are rare and generally show only background concentrations. With the advent of low-cost, wirelessly connected sensors, air quality measurements are increasingly being made in places where many people spend time and pollution is much worse: on streets near traffic. In the interests of enabling members of the public to measure the air that they breathe, we took an open-source approach to designing a device for measuring PM2.5. Parts are relatively cheap, but of good quality and can be easily found in electronics or hardware stores, or on-line. Software is open source and the free LoRaWAN-based "The Things Network" the platform. A number of low-cost sensors we tested had problems, but those selected performed well when co-located with reference-quality instruments. A network of the devices was deployed in an urban centre, yielding valuable data for an extended time. Concentrations of PM2.5 at street level were often ten times worse than at air quality stations. The devices and network offer the opportunity for measurements in locations that concern the public.


Subject(s)
Air Pollutants/analysis , Air Pollution/prevention & control , Community Participation , Environmental Monitoring/instrumentation , Particulate Matter/analysis , Air Pollution/adverse effects , Cities , Environmental Monitoring/methods , Humans , Limit of Detection , New South Wales , Particulate Matter/adverse effects , Vehicle Emissions/analysis , Wildfires
3.
Sensors (Basel) ; 19(22)2019 Nov 16.
Article in English | MEDLINE | ID: mdl-31744161

ABSTRACT

Floods are amongst the most common and devastating of all natural hazards. The alarming number of flood-related deaths and financial losses suffered annually across the world call for improved response to flood risks. Interestingly, the last decade has presented great opportunities with a series of scholarly activities exploring how camera images and wireless sensor data from Internet-of-Things (IoT) networks can improve flood management. This paper presents a systematic review of the literature regarding IoT-based sensors and computer vision applications in flood monitoring and mapping. The paper contributes by highlighting the main computer vision techniques and IoT sensor approaches utilised in the literature for real-time flood monitoring, flood modelling, mapping and early warning systems including the estimation of water level. The paper further contributes by providing recommendations for future research. In particular, the study recommends ways in which computer vision and IoT sensor techniques can be harnessed to better monitor and manage coastal lagoons-an aspect that is under-explored in the literature.

4.
Sensors (Basel) ; 19(9)2019 May 02.
Article in English | MEDLINE | ID: mdl-31052514

ABSTRACT

The increasing development of urban centers brings serious challenges for traffic management. In this paper, we introduce a smart visual sensor, developed for a pilot project taking place in the Australian city of Liverpool (NSW). The project's aim was to design and evaluate an edge-computing device using computer vision and deep neural networks to track in real-time multi-modal transportation while ensuring citizens' privacy. The performance of the sensor was evaluated on a town center dataset. We also introduce the interoperable Agnosticity framework designed to collect, store and access data from multiple sensors, with results from two real-world experiments.

SELECTION OF CITATIONS
SEARCH DETAIL