Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 21(4): 754-63, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17268520

ABSTRACT

The occurrence of leukemia in a gene therapy trial for SCID-X1 has highlighted insertional mutagenesis as an adverse effect. Although retroviral integration near the T-cell acute lymphoblastic leukemia (T-ALL) oncogene LIM-only protein 2 (LMO2) appears to be a common event, it is unclear why LMO2 was preferentially targeted. We show that of classical T-ALL oncogenes, LMO2 is most highly transcribed in CD34+ progenitor cells. Upon stimulation with growth factors typically used in gene therapy protocols transcription of LMO2, LYL1, TAL1 and TAN1 is most prominent. Therefore, these oncogenes may be susceptible to viral integration. The interleukin-2 receptor gamma chain (IL2Rgamma), which is mutated in SCID-X1, has been proposed as a cooperating oncogene to LMO2. However, we found that overexpressing IL2Rgamma had no effect on T-cell development. In contrast, retroviral overexpression of LMO2 in CD34+ cells caused severe abnormalities in T-cell development, but B-cell and myeloid development remained unaffected. Our data help explain why LMO2 was preferentially targeted over many of the other known T-ALL oncogenes. Furthermore, during T-cell development retrovirus-mediated expression of IL2Rgamma may not be directly oncogenic. Instead, restoration of normal IL7-receptor signaling may allow progression of T-cell development to stages where ectopic LMO2 expression causes aberrant thymocyte growth.


Subject(s)
Antigens, CD34/immunology , DNA-Binding Proteins/genetics , Genetic Therapy/methods , Leukemia-Lymphoma, Adult T-Cell/genetics , Leukemia/genetics , Leukemia/therapy , Metalloproteins/genetics , Receptors, Interleukin-2/genetics , T-Lymphocytes/immunology , Adaptor Proteins, Signal Transducing , Antigens, CD/immunology , Growth Substances/pharmacology , Humans , LIM Domain Proteins , Leukemia-Lymphoma, Adult T-Cell/immunology , Leukemia-Lymphoma, Adult T-Cell/therapy , Mutagenesis, Insertional , Proto-Oncogene Proteins , Retroviridae
2.
Gene Ther ; 13(21): 1524-33, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16763662

ABSTRACT

Retroviral vectors with self-inactivating (SIN) long-terminal repeats not only increase the autonomy of the internal promoter but may also reduce the risk of insertional upregulation of neighboring alleles. However, gammaretroviral as opposed to lentiviral packaging systems produce suboptimal SIN vector titers, a major limitation for their clinical use. Northern blot data revealed that low SIN titers were associated with abundant transcription of internal rather than full-length transcripts in transfected packaging cells. When using the promoter of Rous sarcoma virus or a tetracycline-inducible promoter to generate full-length transcripts, we obtained a strong enhancement in titer (up to 4 x 10(7) transducing units per ml of unconcentrated supernatant). Dual fluorescence vectors and Northern blots revealed that promoter competition is a rate-limiting step of SIN vector production. SIN vector stocks pseudotyped with RD114 envelope protein had high transduction efficiency in human and non-human primate cells. This study introduces a new generation of efficient gammaretroviral SIN vectors as a platform for further optimizations of retroviral vector performance.


Subject(s)
Gammaretrovirus/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , Promoter Regions, Genetic , Terminal Repeat Sequences , Animals , Antigens, CD34 , Cell Line , Flow Cytometry , Gene Expression Regulation , Genetic Engineering , Macaca mulatta , Male , Plasmids , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Transduction, Genetic/methods , Transfection , Virus Inactivation
SELECTION OF CITATIONS
SEARCH DETAIL