Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Int J Mol Sci ; 25(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38732244

ABSTRACT

Cardiovascular outcome in Marfan syndrome (MFS) patients most prominently depends on aortic aneurysm progression with subsequent aortic dissection. Angiotensin II receptor blockers (ARBs) prevent aneurysm formation in MFS mouse models. In patients, ARBs only slow down aortic dilation. Downstream signalling from the angiotensin II type 1 receptor (AT1R) is mediated by G proteins and ß-arrestin recruitment. AT1R also interacts with the monocyte chemoattractant protein-1 (MCP-1) receptor, resulting in inflammation. In this study, we explore the targeting of ß-arrestin signalling in MFS mice by administering TRV027. Furthermore, because high doses of the ARB losartan, which has been proven beneficial in MFS, cannot be achieved in humans, we investigate a potential additive effect by combining lower concentrations of losartan (25 mg/kg/day and 5 mg/kg/day) with barbadin, a ß-arrestin blocker, and DMX20, a C-C chemokine receptor type 2 (CCR2) blocker. A high dose of losartan (50 mg/kg/day) slowed down aneurysm progression compared to untreated MFS mice (1.73 ± 0.12 vs. 1.96 ± 0.08 mm, p = 0.0033). TRV027, the combination of barbadin with losartan (25 mg/kg/day), and DMX-200 (90 mg/kg/day) with a low dose of losartan (5 mg/kg/day) did not show a significant beneficial effect. Our results confirm that while losartan effectively halts aneurysm formation in Fbn1C1041G/+ MFS mice, neither TRV027 alone nor any of the other compounds combined with lower doses of losartan demonstrate a notable impact on aneurysm advancement. It appears that complete blockade of AT1R function, achieved by administrating a high dosage of losartan, may be necessary for inhibiting aneurysm progression in MFS.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Disease Models, Animal , Losartan , Marfan Syndrome , Receptor, Angiotensin, Type 1 , Signal Transduction , Animals , Marfan Syndrome/metabolism , Marfan Syndrome/drug therapy , Marfan Syndrome/complications , Mice , Losartan/pharmacology , Receptor, Angiotensin, Type 1/metabolism , Signal Transduction/drug effects , Angiotensin II Type 1 Receptor Blockers/pharmacology , Aortic Aneurysm/metabolism , Aortic Aneurysm/etiology , Aortic Aneurysm/prevention & control , Aortic Aneurysm/drug therapy , Aortic Aneurysm/pathology , Male , beta-Arrestins/metabolism , Receptors, CCR2/metabolism , Receptors, CCR2/antagonists & inhibitors , Mice, Inbred C57BL
2.
NPJ Genom Med ; 9(1): 22, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531898

ABSTRACT

Pathogenic loss-of-function variants in BGN, an X-linked gene encoding biglycan, are associated with Meester-Loeys syndrome (MRLS), a thoracic aortic aneurysm/dissection syndrome. Since the initial publication of five probands in 2017, we have considerably expanded our MRLS cohort to a total of 18 probands (16 males and 2 females). Segregation analyses identified 36 additional BGN variant-harboring family members (9 males and 27 females). The identified BGN variants were shown to lead to loss-of-function by cDNA and Western Blot analyses of skin fibroblasts or were strongly predicted to lead to loss-of-function based on the nature of the variant. No (likely) pathogenic missense variants without additional (predicted) splice effects were identified. Interestingly, a male proband with a deletion spanning the coding sequence of BGN and the 5' untranslated region of the downstream gene (ATP2B3) presented with a more severe skeletal phenotype. This may possibly be explained by expressional activation of the downstream ATPase ATP2B3 (normally repressed in skin fibroblasts) driven by the remnant BGN promotor. This study highlights that aneurysms and dissections in MRLS extend beyond the thoracic aorta, affecting the entire arterial tree, and cardiovascular symptoms may coincide with non-specific connective tissue features. Furthermore, the clinical presentation is more severe and penetrant in males compared to females. Extensive analysis at RNA, cDNA, and/or protein level is recommended to prove a loss-of-function effect before determining the pathogenicity of identified BGN missense and non-canonical splice variants. In conclusion, distinct mechanisms may underlie the wide phenotypic spectrum of MRLS patients carrying loss-of-function variants in BGN.

3.
Front Genet ; 14: 1251675, 2023.
Article in English | MEDLINE | ID: mdl-37719708

ABSTRACT

Background: TGFB3 variants cause Loeys-Dietz syndrome type 5, a syndromic form of thoracic aortic aneurysm and dissection. The exact disease phenotype is hard to delineate because of few identified cases and highly variable clinical representation. Methodology: We provide the results of a haplotype analysis and a medical record review of clinical features of 27 individuals from 5 different families, originating from the Campine region in Flanders, carrying the NM_003239.5(TGFB3):c.787G>C p.(Asp263His) likely pathogenic variant, dbSNP:rs796051886, ClinVar:203492. The Asp263 residue is essential for integrin binding to the Arg-Gly-Asp (RGD) motif of the TGFß3-cytokine. Results: The haplotype analysis revealed a shared haplotype of minimum 1.92 Mb and maximum 4.14 Mb, suggesting a common founder originating >400 years ago. Variable clinical features included connective tissue manifestations, non-aneurysmal cardiovascular problems such as hypertrophic cardiomyopathy, bicuspid aortic valve, mitral valve disease, and septal defects. Remarkably, only in 4 out of the 27 variant-harboring individuals, significant aortic involvement was observed. In one family, a 31-year-old male presented with type A dissection. In another family, the male proband (65 years) underwent a Bentall procedure because of bicuspid aortic valve insufficiency combined with sinus of Valsalva of 50 mm, while an 80-year-old male relative had an aortic diameter of 43 mm. In a third family, the father of the proband (75 years) presented with ascending aortic aneurysm (44 mm). Conclusion: The low penetrance (15%) of aortic aneurysm/dissection suggests that haploinsufficiency alone by the TGFB3 variant may not result in aneurysm development but that additional factors are required to provoke the aneurysm phenotype.

4.
JAMA Cardiol ; 8(8): 721-731, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37405741

ABSTRACT

Importance: Nonsyndromic bicuspid aortic valve (nsBAV) is the most common congenital heart valve malformation. BAV has a heritable component, yet only a few causative genes have been identified; understanding BAV genetics is a key point in developing personalized medicine. Objective: To identify a new gene for nsBAV. Design, Setting, and Participants: This was a comprehensive, multicenter, genetic association study based on candidate gene prioritization in a familial cohort followed by rare and common association studies in replication cohorts. Further validation was done using in vivo mice models. Study data were analyzed from October 2019 to October 2022. Three cohorts of patients with BAV were included in the study: (1) the discovery cohort was a large cohort of inherited cases from 29 pedigrees of French and Israeli origin; (2) the replication cohort 1 for rare variants included unrelated sporadic cases from various European ancestries; and (3) replication cohort 2 was a second validation cohort for common variants in unrelated sporadic cases from Europe and the US. Main Outcomes and Measures: To identify a candidate gene for nsBAV through analysis of familial cases exome sequencing and gene prioritization tools. Replication cohort 1 was searched for rare and predicted deleterious variants and genetic association. Replication cohort 2 was used to investigate the association of common variants with BAV. Results: A total of 938 patients with BAV were included in this study: 69 (7.4%) in the discovery cohort, 417 (44.5%) in replication cohort 1, and 452 (48.2%) in replication cohort 2. A novel human nsBAV gene, MINDBOMB1 homologue MIB1, was identified. MINDBOMB1 homologue (MIB1) is an E3-ubiquitin ligase essential for NOTCH-signal activation during heart development. In approximately 2% of nsBAV index cases from the discovery and replication 1 cohorts, rare MIB1 variants were detected, predicted to be damaging, and were significantly enriched compared with population-based controls (2% cases vs 0.9% controls; P = .03). In replication cohort 2, MIB1 risk haplotypes significantly associated with nsBAV were identified (permutation test, 1000 repeats; P = .02). Two genetically modified mice models carrying Mib1 variants identified in our cohort showed BAV on a NOTCH1-sensitized genetic background. Conclusions and Relevance: This genetic association study identified the MIB1 gene as associated with nsBAV. This underscores the crucial role of the NOTCH pathway in the pathophysiology of BAV and its potential as a target for future diagnostic and therapeutic intervention.


Subject(s)
Bicuspid Aortic Valve Disease , Signal Transduction , Ubiquitin-Protein Ligases , Receptors, Notch/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Genetic Association Studies , Humans
5.
Stem Cell Res ; 69: 103080, 2023 06.
Article in English | MEDLINE | ID: mdl-36966641

ABSTRACT

Spondyloepiphyseal dysplasia congenita (SEDC) is a severe non-lethal type 2 collagenopathy caused by pathogenic variants in the COL2A1 gene, which encodes the alpha-1 chain of type II collagen. SEDC is clinically characterized by severe short stature, degenerative joint disease, hearing impairment, orofacial anomalies and ocular manifestations. To study and therapeutically target the underlying disease mechanisms, human iPSC-chondrocytes are considered highly suitable as they have been shown to exhibit several key features of skeletal dysplasias. Prior to creating iPSC-chondrocytes, peripheral blood mononuclear cells of two male SEDC patients, carrying the p.Gly1107Arg and p.Gly408Asp pathogenic variants, respectively, were successfully reprogrammed into iPSCs using the CytoTune™-iPS 2.0 Sendai Kit (Invitrogen).


Subject(s)
Induced Pluripotent Stem Cells , Osteochondrodysplasias , Humans , Male , Leukocytes, Mononuclear , Osteochondrodysplasias/genetics , Collagen Type II/genetics
6.
Stem Cell Res ; 69: 103061, 2023 06.
Article in English | MEDLINE | ID: mdl-36905820

ABSTRACT

Patients carrying IPO8 bi-allelic loss-of-function variants have a highly consistent phenotype that resembles the phenotype of Loeys-Dietz syndrome. They present with early onset thoracic aortic aneurysm (TAA) and connective tissue findings such as arachnodactyly and joint hypermobility. Other recurrent phenotypic manifestations include facial dysmorphisms, a high arched or cleft palate/bifid uvula and motor developmental delay. An iPSC line (BBANTWi011-A) was generated started from peripheral blood mononuclear cells (PBMCs) from a patient carrying a homozygous variant in the IPO8 gene (MIM: 605600, NM_006390.3: c.1420C>T, p.(Arg474*)). PBMCs were reprogrammed using the Cytotune®-iPS 2.0 Sendai Reprogramming Kit (Invitrogen). The generated iPSCs are expressing pluripotency markers and are able to differentiate into the three germ layers.


Subject(s)
Induced Pluripotent Stem Cells , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear , Cell Line , Mutation , Loss of Heterozygosity
7.
Stem Cell Res ; 68: 103050, 2023 04.
Article in English | MEDLINE | ID: mdl-36801568

ABSTRACT

Marfan syndrome (MFS) is a connective tissue disorder with pleiotropic manifestations in the ocular, skeletal and cardiovascular system. Ruptured aortic aneurysms in MFS patients are associated with high mortality rates. MFS is typically caused by pathogenic variants in the fibrillin-1 (FBN1) gene. Here, we report a generated induced pluripotent cell (iPSC) line of a MFS patient with a FBN1 c.5372G > A (p.Cys1791Tyr) variant. For that, skin fibroblasts of a MFS patient carrying a FBN1 c.5372G > A (p.Cys1791Tyr) variant were successfully reprogrammed into iPSCs using the CytoTune™-iPS 2.0 Sendai Kit (Invitrogen). The iPSCs showed a normal karyotype, expressed pluripotency markers, were able to differentiate into three germ layers and carried the original genotype.


Subject(s)
Induced Pluripotent Stem Cells , Marfan Syndrome , Humans , Marfan Syndrome/genetics , Marfan Syndrome/pathology , Fibrillin-1/genetics , Induced Pluripotent Stem Cells/metabolism , Mutation , Genotype
9.
Stem Cell Res ; 67: 103024, 2023 03.
Article in English | MEDLINE | ID: mdl-36640472

ABSTRACT

Hemizygous missense variants in the X-linked BGN gene, encoding the extracellular matrix protein biglycan, cause spondyloepimetaphyseal dysplasia (SEMD, biglycan type), which is clinically characterized by short stature, brachydactyly and osteoarthritis. Little is known about the pathomechanisms underlying SEMD, biglycan type. IPSC-derived chondrocyte disease models have been shown to exhibit several key aspects of known disease mechanisms of skeletal dysplasias and are therefore considered highly suitable human disease models to study SEMD, biglycan type. Prior to creating iPSC-chondrocytes, dermal fibroblasts of two male patients with SEMD, biglycan type, carrying the p.Gly259Val variant were successfully reprogrammed into iPSCs using the CytoTuneTM-iPS 2.0 Sendai Kit (Invitrogen).


Subject(s)
Induced Pluripotent Stem Cells , Osteochondrodysplasias , Humans , Male , Biglycan/genetics , Osteochondrodysplasias/genetics , Mutation, Missense , Extracellular Matrix Proteins/genetics
10.
Eur J Med Genet ; 66(1): 104673, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36460281

ABSTRACT

Heritable thoracic aortic diseases (HTAD) are rare pathologies associated with thoracic aortic aneurysms and dissection, which can be syndromic or non-syndromic. They may result from genetic defects. Associated genes identified to date are classified into those encoding components of the (a) extracellular matrix (b) TGFß pathway and (c) smooth muscle contractile mechanism. Timely diagnosis allows for prompt aortic surveillance and prophylactic surgery, hence improving life expectancy and reducing maternal complications as well as providing reassurance to family members when a diagnosis is ruled out. This document is an expert opinion reflecting strategies put forward by medical experts and patient representatives involved in the HTAD Rare Disease Working Group of VASCERN. It aims to provide a patient pathway that improves patient care by diminishing time to diagnosis, facilitating the establishment of a correct diagnosis using molecular genetics when possible, excluding the diagnosis in unaffected persons through appropriate family screening and avoiding overuse of resources. It is being recommended that patients are referred to an expert centre for further evaluation if they meet at least one of the following criteria: (1) thoracic aortic dissection (<70 years if hypertensive; all ages if non-hypertensive), (2) thoracic aortic aneurysm (all adults with Z score >3.5 or 2.5-3.5 if non-hypertensive or hypertensive and <60 years; all children with Z score >3), (3) family history of HTAD with/without a pathogenic variant in a gene linked to HTAD, (4) ectopia lentis without other obvious explanation and (5) a systemic score of >5 in adults and >3 in children. Aortic imaging primarily relies on transthoracic echocardiography with magnetic resonance imaging or computed tomography as needed. Genetic testing should be considered in those with a high suspicion of underlying genetic aortopathy. Though panels vary among centers, for patients with thoracic aortic aneurysm or dissection or systemic features these should include genes with a definitive or strong association to HTAD. Genetic cascade screening and serial aortic imaging should be considered for family screening and follow-up. In conclusion, the implementation of these strategies should help standardise the diagnostic work-up and follow-up of patients with suspected HTAD and the screening of their relatives.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Adult , Child , Humans , Genetic Testing , Aortic Aneurysm, Thoracic/genetics , Patient Care
11.
NPJ Genom Med ; 7(1): 68, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36414630

ABSTRACT

SMAD6 encodes an intracellular inhibitor of the bone morphogenetic protein (BMP) signalling pathway. Until now, SMAD6-deficiency has been associated with three distinctive human congenital conditions, i.e., congenital heart diseases, including left ventricular obstruction and conotruncal defects, craniosynostosis and radioulnar synostosis. Intriguingly, a similar spectrum of heterozygous loss-of-function variants has been reported to cause these clinically distinct disorders without a genotype-phenotype correlation. Even identical nucleotide changes have been described in patients with either a cardiovascular phenotype, craniosynostosis or radioulnar synostosis. These findings suggest that the primary pathogenic variant alone cannot explain the resultant patient phenotype. In this review, we summarise clinical and (patho)genetic (dis)similarities between these three SMAD6-related conditions, compare published Madh6 mouse models, in which the importance and impact of the genetic background with respect to the observed phenotype is highlighted, and elaborate on the cellular key mechanisms orchestrated by SMAD6 in the development of these three discrete inherited disorders. In addition, we discuss future research needed to elucidate the pathogenetic mechanisms underlying these diseases in order to improve their molecular diagnosis, advance therapeutic strategies and facilitate counselling of patients and their families.

12.
Stem Cell Res ; 65: 102956, 2022 12.
Article in English | MEDLINE | ID: mdl-36356561

ABSTRACT

Loeys-Dietz syndrome (LDS) is an autosomal dominant connective tissue disorder presenting with a variety of cardiovascular, skeletal, craniofacial and cutaneous manifestations. Aortic rupture or dissection of a thoracic aortic aneurysm (TAA) is the most life-threatening complication. We generated a an iPSC line from peripheral mononuclear blood cells of a TAA-presenting Loeys-Dietz syndrome type V patient with a causal, heterozygous variant in the TGFB3 gene (MIM* 190230, NM_003239.4:c.787G > C, p.(Asp263His)). The iPSCs present with the typical iPSC morphology, express pluripotency markers, have a normal karyotype and possess tri-lineage differentiation capability.


Subject(s)
Loeys-Dietz Syndrome , Humans , Loeys-Dietz Syndrome/genetics , Transforming Growth Factor beta3
13.
Stem Cell Res ; 64: 102932, 2022 10.
Article in English | MEDLINE | ID: mdl-36219981

ABSTRACT

Loeys-Dietz Syndrome (LDS) is an autosomal dominant connective tissue disorder. The major hallmark of LDS is thoracic aortic aneurysm and dissection (TAAD). We generated an induced pluripotent stem cell (iPSC) line of a severely affected LDS patient carrying a pathogenic SMAD3 p.Arg287Gln variant. Peripheral blood mononuclear cells were reprogrammed using non-integrating Sendai viral vectors. The autonomous pluripotency state of the resulting iPSC model was proven by the presence of pluripotency markers, trilineage differentiation potential and absence of the Sendai vector backbone. This iPSC line can be used to study and/or therapeutically target the cellular pathomechanisms of SMAD3-related LDS.


Subject(s)
Induced Pluripotent Stem Cells , Loeys-Dietz Syndrome , Humans , Loeys-Dietz Syndrome/genetics , Loeys-Dietz Syndrome/metabolism , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear , Cell Differentiation
14.
Annu Rev Genomics Hum Genet ; 23: 223-253, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36044906

ABSTRACT

Genetic predisposition and risk factors such as hypertension and smoking can instigate the development of thoracic aortic aneurysm (TAA), which can lead to highly lethal aortic wall dissection and/or rupture. Monogenic defects in multiple genes involved in the elastin-contractile unit and the TGFß signaling pathway have been associated with TAA in recent years, along with several genetic modifiers and risk-conferring polymorphisms. Advances in omics technology have also provided significant insights into the processes behind aortic wall degeneration: inflammation, epigenetics, vascular smooth muscle phenotype change and depletion, reactive oxygen species generation, mitochondrial dysfunction, and angiotensin signaling dysregulation. These recent advances and findings might pave the way for a therapy that is capable of stopping and perhaps even reversing aneurysm progression.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Aortic Dissection/genetics , Aortic Dissection/metabolism , Animals , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/metabolism , Humans , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phenotype
15.
Hum Mutat ; 43(12): 1824-1828, 2022 12.
Article in English | MEDLINE | ID: mdl-35819173

ABSTRACT

Pathogenic variants in JAG1 are known to cause Alagille syndrome (ALGS), a disorder that primarily affects the liver, lung, kidney, and skeleton. Whereas cardiac symptoms are also frequently observed in ALGS, thoracic aortic aneurysms have only been reported sporadically in postmortem autopsies. We here report two families with segregating JAG1 variants that present with isolated aneurysmal disease, as well as the first histological evaluation of aortic aneurysm tissue of a JAG1 variant carrier. Our observations shed more light on the pathomechanisms behind aneurysm formation in JAG1 variant harboring individuals and underline the importance of cardiovascular imaging in the clinical follow-up of such individuals.


Subject(s)
Alagille Syndrome , Humans , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Alagille Syndrome/genetics , Heart , Calcium-Binding Proteins
16.
Genet Med ; 24(7): 1583-1591, 2022 07.
Article in English | MEDLINE | ID: mdl-35499524

ABSTRACT

PURPOSE: CTR9 is a subunit of the PAF1 complex (PAF1C) that plays a crucial role in transcription regulation by binding CTR9 to RNA polymerase II. It is involved in transcription-coupled histone modification through promoting H3K4 and H3K36 methylation. We describe the clinical and molecular studies in 13 probands, harboring likely pathogenic CTR9 missense variants, collected through GeneMatcher. METHODS: Exome sequencing was performed in all individuals. CTR9 variants were assessed through 3-dimensional modeling of the activated human transcription complex Pol II-DSIF-PAF-SPT6 and the PAF1/CTR9 complex. H3K4/H3K36 methylation analysis, mitophagy assessment based on tetramethylrhodamine ethyl ester perchlorate immunofluorescence, and RNA-sequencing in skin fibroblasts from 4 patients was performed. RESULTS: Common clinical findings were variable degrees of intellectual disability, hypotonia, joint hyperlaxity, speech delay, coordination problems, tremor, and autism spectrum disorder. Mild dysmorphism and cardiac anomalies were less frequent. For 11 CTR9 variants, de novo occurrence was shown. Three-dimensional modeling predicted a likely disruptive effect of the variants on local CTR9 structure and protein interaction. Additional studies in fibroblasts did not unveil the downstream functional consequences of the identified variants. CONCLUSION: We describe a neurodevelopmental disorder caused by (mainly) de novo variants in CTR9, likely affecting PAF1C function.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Phosphoproteins , Transcription Factors , Gene Expression Regulation , Heterozygote , Humans , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Phosphoproteins/genetics , Transcription Factors/genetics
17.
Hum Mutat ; 43(7): 815-831, 2022 07.
Article in English | MEDLINE | ID: mdl-35419902

ABSTRACT

Different pathogenic variants in the fibrillin-1 gene (FBN1) cause Marfan syndrome and acromelic dysplasias. Whereas the musculoskeletal features of Marfan syndrome involve tall stature, arachnodactyly, joint hypermobility, and muscle hypoplasia, acromelic dysplasia patients present with short stature, brachydactyly, stiff joints, and hypermuscularity. Similarly, pathogenic variants in the fibrillin-2 gene (FBN2) cause either a Marfanoid congenital contractural arachnodactyly or a FBN2-related acromelic dysplasia that most prominently presents with brachydactyly. The phenotypic and molecular resemblances between both the FBN1 and FBN2-related disorders suggest that reciprocal pathomechanistic lessons can be learned. In this review, we provide an updated overview and comparison of the phenotypic and mutational spectra of both the "tall" and "short" fibrillinopathies. The future parallel functional study of both FBN1/2-related disorders will reveal new insights into how pathogenic fibrillin variants differently affect the fibrillin microfibril network and/or growth factor homeostasis in clinically opposite syndromes. This knowledge may eventually be translated into new therapeutic approaches by targeting or modulating the fibrillin microfibril network and/or the signaling pathways under its control.


Subject(s)
Fibrillin-1 , Fibrillin-2 , Marfan Syndrome , Musculoskeletal Abnormalities/genetics , Brachydactyly , Fibrillin-1/genetics , Fibrillin-2/genetics , Humans , Marfan Syndrome/genetics , Phenotype
18.
Am J Physiol Cell Physiol ; 322(6): C1214-C1222, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35476501

ABSTRACT

The class I small leucine-rich proteoglycan biglycan is a crucial structural extracellular matrix component that interacts with a wide range of extracellular matrix molecules. In addition, biglycan is involved in sequestering growth factors such as transforming growth factor-ß and bone morphogenetic proteins and thereby regulating pathway activity. Biglycan consists of a 42-kDa core protein linked to two glycosaminoglycan side chains and both are involved in protein interactions. Biglycan is encoded by the BGN gene located on the X-chromosome and is expressed in various tissues, including vascular tissue, skin, brain, kidney, lung, the immune system, and the musculoskeletal system. Although an increasing amount of data on the biological function of biglycan in the vasculature has been produced, its role in thoracic aortic aneurysms is still not fully elucidated. This review focuses on the role of biglycan in the healthy thoracic aorta and the development of thoracic aortic aneurysm and dissections in both mice and humans.


Subject(s)
Aorta, Thoracic , Transforming Growth Factor beta , Animals , Aorta, Thoracic/metabolism , Biglycan/genetics , Biglycan/metabolism , Bone Morphogenetic Proteins , Extracellular Matrix Proteins/genetics , Mice , Signal Transduction , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
19.
J Bone Miner Res ; 37(3): 397-410, 2022 03.
Article in English | MEDLINE | ID: mdl-35124831

ABSTRACT

Induced pluripotent stem cell (iPSC) technology allows pathomechanistic and therapeutic investigation of human heritable disorders affecting tissue types whose collection from patients is difficult or even impossible. Among them are cartilage diseases. Over the past decade, iPSC-chondrocyte disease models have been shown to exhibit several key aspects of known disease mechanisms. Concurrently, an increasing number of protocols to differentiate iPSCs into chondrocytes have been published, each with its respective (dis)advantages. In this review we provide a comprehensive overview of the different differentiation approaches, the hitherto described iPSC-chondrocyte disease models and mechanistic and/or therapeutic insights that have been derived from their investigation, and the current model limitations. Key lessons are that the most appropriate differentiation approach is dependent upon the cartilage disease under investigation and that further optimization is still required to recapitulate the in vivo cartilage. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Cartilage Diseases , Induced Pluripotent Stem Cells , Cartilage/metabolism , Cartilage Diseases/metabolism , Cell Differentiation , Chondrocytes/metabolism , Drug Discovery , Humans
20.
Genet Med ; 24(5): 1045-1053, 2022 05.
Article in English | MEDLINE | ID: mdl-35058154

ABSTRACT

PURPOSE: In a large cohort of 373 pediatric patients with Marfan syndrome (MFS) with a severe cardiovascular phenotype, we explored the proportion of patients with MFS with a pathogenic FBN1 variant and analyzed whether the type/location of FBN1 variants was associated with specific clinical characteristics and response to treatment. Patients were recruited on the basis of the following criteria: aortic root z-score > 3, age 6 months to 25 years, no prior or planned surgery, and aortic root diameter < 5 cm. METHODS: Targeted resequencing and deletion/duplication testing of FBN1 and related genes were performed. RESULTS: We identified (likely) pathogenic FBN1 variants in 91% of patients. Ectopia lentis was more frequent in patients with dominant-negative (DN) variants (61%) than in those with haploinsufficient variants (27%). For DN FBN1 variants, the prevalence of ectopia lentis was highest in the N-terminal region (84%) and lowest in the C-terminal region (17%). The association with a more severe cardiovascular phenotype was not restricted to DN variants in the neonatal FBN1 region (exon 25-33) but was also seen in the variants in exons 26 to 49. No difference in the therapeutic response was detected between genotypes. CONCLUSION: Important novel genotype-phenotype associations involving both cardiovascular and extra-cardiovascular manifestations were identified, and existing ones were confirmed. These findings have implications for prognostic counseling of families with MFS.


Subject(s)
Ectopia Lentis , Marfan Syndrome , Biological Variation, Population , Child , Ectopia Lentis/complications , Ectopia Lentis/genetics , Fibrillin-1/genetics , Fibrillins/genetics , Genotype , Humans , Marfan Syndrome/genetics , Mutation , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...