Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Acta Neuropathol ; 147(1): 6, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38170217

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder, characterized by selective loss of motor neurons (MNs). A number of causative genetic mutations underlie the disease, including mutations in the fused in sarcoma (FUS) gene, which can lead to both juvenile and late-onset ALS. Although ALS results from MN death, there is evidence that dysfunctional glial cells, including oligodendroglia, contribute to neurodegeneration. Here, we used human induced pluripotent stem cells (hiPSCs) with a R521H or a P525L mutation in FUS and their isogenic controls to generate oligodendrocyte progenitor cells (OPCs) by inducing SOX10 expression from a TET-On SOX10 cassette. Mutant and control iPSCs differentiated efficiently into OPCs. RNA sequencing identified a myelin sheath-related phenotype in mutant OPCs. Lipidomic studies demonstrated defects in myelin-related lipids, with a reduction of glycerophospholipids in mutant OPCs. Interestingly, FUSR521H OPCs displayed a decrease in the phosphatidylcholine/phosphatidylethanolamine ratio, known to be associated with maintaining membrane integrity. A proximity ligation assay further indicated that mitochondria-associated endoplasmic reticulum membranes (MAM) were diminished in both mutant FUS OPCs. Moreover, both mutant FUS OPCs displayed increased susceptibility to ER stress when exposed to thapsigargin, and exhibited impaired mitochondrial respiration and reduced Ca2+ signaling from ER Ca2+ stores. Taken together, these results demonstrate a pathological role of mutant FUS in OPCs, causing defects in lipid metabolism associated with MAM disruption manifested by impaired mitochondrial metabolism with increased susceptibility to ER stress and with suppressed physiological Ca2+ signaling. As such, further exploration of the role of oligodendrocyte dysfunction in the demise of MNs is crucial and will provide new insights into the complex cellular mechanisms underlying ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Humans , Amyotrophic Lateral Sclerosis/pathology , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Mutation , Oligodendroglia/metabolism , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism
2.
EXCLI J ; 22: 1055-1076, 2023.
Article in English | MEDLINE | ID: mdl-37927348

ABSTRACT

Human cerebral organoids (COs) are self-organizing three-dimensional (3D) neural structures that provide a human-specific platform to study the cellular and molecular processes that underlie different neurological events. The first step of CO generation from human pluripotent stem cells (hPSCs) is neural induction, which is an in vitro simulation of neural ectoderm development. Several signaling pathways cooperate during neural ectoderm development and in vitro differentiation of hPSCs toward neural cell lineages is also affected by them. In this study, we considered some of the known sources of these variable signaling cues arising from cell culture media components and sought to modulate their effects by applying a comprehensive combination of small molecules and growth factors for CO generation. Histological analysis demonstrated that these COs recapitulate the neural progenitor zone and early cortical layer organization, containing different types of neuronal and glial cells which was in accordance with single-nucleus transcriptome profiling results. Moreover, patch clamp and intracellular Ca2+ dynamic studies demonstrated that the COs behave as a functional neural network. Thus, this method serves as a facile protocol for generating hPSC-derived COs that faithfully mimic the features of their in vivo counterparts in the developing human brain. See also Figure 1(Fig. 1).

3.
J Cell Sci ; 136(2)2023 01 15.
Article in English | MEDLINE | ID: mdl-36583297

ABSTRACT

Anti-apoptotic B-cell lymphoma 2 (Bcl-2) regulates a wide array of cellular functions involved in cell death, cell survival and autophagy. Less known is its involvement in the differentiation of cardiomyocytes. As a consequence, mechanisms by which Bcl-2 contributes to cardiac differentiation remain to be elucidated. To address this, we used CRISPR/Cas9 to knockout (KO) BCL2 in human induced pluripotent stem cells (hiPSCs) and investigated the consequence of this KO for differentiation towards cardiomyocytes. Our results indicate that differentiation of hiPSCs to cardiomyocytes was delayed following BCL2 KO. This was not related to the canonical anti-apoptotic function of Bcl-2. This delay led to reduced expression and activity of the cardiomyocyte Ca2+ toolkit. Finally, Bcl-2 KO reduced c-Myc expression and nuclear localization in the early phase of the cardiac differentiation process, which accounts at least in part for the observed delay in the cardiac differentiation. These results suggest that there is a central role for Bcl-2 in cardiomyocyte differentiation and maturation.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Cell Differentiation/genetics , Proto-Oncogene Proteins c-bcl-2/genetics
4.
Front Cell Dev Biol ; 10: 878311, 2022.
Article in English | MEDLINE | ID: mdl-36035984

ABSTRACT

Duchenne Muscular Dystrophy (DMD) is an X-linked neuromuscular disease which to date is incurable. The major cause of death is dilated cardiomyopathy however, its pathogenesis is unclear as existing cellular and animal models do not fully recapitulate the human disease phenotypes. In this study, we generated cardiac organoids from patient-derived induced pluripotent stem cells (DMD-COs) and isogenic-corrected controls (DMD-Iso-COs) and studied if DMD-related cardiomyopathy and disease progression occur in the organoids upon long-term culture (up to 93 days). Histological analysis showed that DMD-COs lack initial proliferative capacity, displayed a progressive loss of sarcoglycan localization and high stress in endoplasmic reticulum. Additionally, cardiomyocyte deterioration, fibrosis and aberrant adipogenesis were observed in DMD-COs over time. RNA sequencing analysis confirmed a distinct transcriptomic profile in DMD-COs which was associated with functional enrichment in hypertrophy/dilated cardiomyopathy, arrhythmia, adipogenesis and fibrosis pathways. Moreover, five miRNAs were identified to be crucial in this dysregulated gene network. In conclusion, we generated patient-derived cardiac organoid model that displayed DMD-related cardiomyopathy and disease progression phenotypes in long-term culture. We envision the feasibility to develop a more complex, realistic and reliable in vitro 3D human cardiac-mimics to study DMD-related cardiomyopathies.

5.
Biochim Biophys Acta Mol Cell Res ; 1869(10): 119308, 2022 10.
Article in English | MEDLINE | ID: mdl-35710019

ABSTRACT

ML-9 elicits a broad spectrum of effects in cells, including inhibition of myosin light chain kinase, inhibition of store-operated Ca2+ entry and lysosomotropic actions that result in prostate cancer cell death. Moreover, the compound also affects endoplasmic reticulum (ER) Ca2+ homeostasis, although the underlying mechanisms remain unclear. We found that ML-9 provokes a rapid mobilization of Ca2+ from ER independently of IP3Rs or TMBIM6/Bax Inhibitor-1, two ER Ca2+-leak channels. Moreover, in unidirectional 45Ca2+ fluxes in permeabilized cells, ML-9 was able to reduce ER Ca2+-store content. Although the ER Ca2+ store content was decreased, ML-9 did not directly inhibit SERCA's ATPase activity in vitro using microsomal preparations. Consistent with its chemical properties as a cell-permeable weak alkalinizing agent (calculated pKa of 8.04), ML-9 provoked a rapid increase in cytosolic pH preceding the Ca2+ efflux from the ER. Pre-treatment with the weak acid 3NPA blunted the ML-9-evoked increase in intracellular pH and subsequent ML-9-induced Ca2+ mobilization from the ER. This experiment underpins a causal link between ML-9's impact on the pH and Ca2+ dynamics. Overall, our work indicates that the lysosomotropic drug ML-9 may not only impact lysosomal compartments but also have severe impacts on ER Ca2+ handling in cellulo.


Subject(s)
Antacids , Calcium , Antacids/metabolism , Antacids/pharmacology , Azepines , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Humans , Hydrogen-Ion Concentration , Male
6.
Sci Signal ; 14(702): eabc6165, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34582248

ABSTRACT

Mutations in WFS1 (which encodes Wolframin, WFS1) and CISD2 (which encodes CDGSH iron sulfur domain 2) result in Wolfram syndrome (WS), a rare genetic disorder that starts with juvenile diabetes and progresses to neurological dysfunction. WFS1 and CISD2 belong to different protein families with distinct properties. Despite differences between WFS1 and CISD2, loss-of-function mutations in these proteins result in similar disease phenotypes, suggesting that they have convergent roles. WFS1 and CISD2 both localize at the endoplasmic reticulum (ER), the main intracellular calcium (Ca2+) store, which is implicated in several diseases, including WS. Here, we not only review the roles of WFS1 and CISD2 in Ca2+ signaling modulation but also point out knowledge gaps. Because WFS1 and CISD2 form complexes with Ca2+ transporters and Ca2+ channels, it is thought that they influence the activity of these transport systems in cells. Together, the studies reviewed here provide a better understanding of the pathogenesis and the severe disease burden of WS and may contribute to the development of therapeutics.


Subject(s)
Wolfram Syndrome , Humans , Membrane Proteins/genetics , Signal Transduction , Wolfram Syndrome/genetics
7.
CRISPR J ; 4(4): 502-518, 2021 08.
Article in English | MEDLINE | ID: mdl-34406036

ABSTRACT

Isogenic induced pluripotent stem cell (iPSC) lines are currently mostly created by homology directed repair evoked by a double-strand break (DSB) generated by CRISPR-Cas9. However, this process is in general lengthy and inefficient. This problem can be overcome, specifically for correction or insertion of transition mutations, by using base editing (BE). BE does not require DSB formation, hence avoiding creation of genomic off-target breaks and insertions and deletions, and as it is highly efficient, it also does not require integration of selection cassettes in the genome to enrich for edited cells. BE has been successfully used in many cell types as well as in some in vivo settings to correct or insert mutations, but very few studies have reported generation of isogenic iPSC lines using BE. Here, we describe a simple and fast workflow to generate isogenic iPSCs efficiently with a compound heterozygous or a homozygous Wolfram syndrome 1 (WFS1) mutation using adenine BE, without the need to include a genomic selection cassette and without off-target modifications. We demonstrated that correctly base-edited clones can be generated by screening only five cell clones in less than a month, provided that the mutation is positioned in a correct place with regards to the protospacer adjacent motif sequence and no putative bystander bases exist.


Subject(s)
Adenine , CRISPR-Cas Systems , Gene Editing , Induced Pluripotent Stem Cells/metabolism , Cell Culture Techniques , Cell Line , Flow Cytometry , Gene Editing/methods , Gene Targeting , Genetic Vectors , High-Throughput Nucleotide Sequencing , Humans , Induced Pluripotent Stem Cells/cytology , Membrane Proteins/genetics , Mutation , Plasmids , RNA, Guide, Kinetoplastida/genetics , Reproducibility of Results
8.
Prog Mol Subcell Biol ; 59: 215-237, 2021.
Article in English | MEDLINE | ID: mdl-34050869

ABSTRACT

Intracellular Ca2+ signaling regulates a plethora of cellular functions. A central role in these processes is reserved for the inositol 1,4,5-trisphosphate receptor (IP3R), a ubiquitously expressed Ca2+-release channel, mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms (IP3R1, IP3R2 and IP3R3) exist, encoded respectively by ITPR1, ITPR2 and ITPR3. The proteins encoded by these genes are each about 2700 amino acids long and assemble into large tetrameric channels, which form the target of many regulatory proteins, including several tumor suppressors and oncogenes. Due to the important role of the IP3Rs in cell function, their dysregulation is linked to multiple pathologies. In this review, we highlight the complex role of the IP3R in cancer, as it participates in most of the so-called "hallmarks of cancer". In particular, the IP3R directly controls cell death and cell survival decisions via regulation of autophagy and apoptosis. Moreover, the IP3R impacts cellular proliferation, migration and invasion. Typical examples of the role of the IP3Rs in these various processes are discussed. The relative levels of the IP3R isoforms expressed and their subcellular localization, e.g. at the ER-mitochondrial interface, is hereby important. Finally, evidence is provided about how the knowledge of the regulation of the IP3R by tumor suppressors and oncogenes can be exploited to develop novel therapeutic approaches to fight cancer.


Subject(s)
Endoplasmic Reticulum , Neoplasms , Biology , Calcium/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Humans , Inositol 1,4,5-Trisphosphate Receptors/genetics , Neoplasms/genetics
9.
Stem Cell Rev Rep ; 17(5): 1855-1873, 2021 10.
Article in English | MEDLINE | ID: mdl-33982246

ABSTRACT

Astrocytes, the main supportive cell type of the brain, show functional impairments upon ageing and in a broad spectrum of neurological disorders. Limited access to human astroglia for pre-clinical studies has been a major bottleneck delaying our understanding of their role in brain health and disease. We demonstrate here that functionally mature human astrocytes can be generated by SOX9 overexpression for 6 days in pluripotent stem cell (PSC)-derived neural progenitor cells. Inducible (i)SOX9-astrocytes display functional properties comparable to primary human astrocytes comprising glutamate uptake, induced calcium responses and cytokine/growth factor secretion. Importantly, electrophysiological properties of iNGN2-neurons co-cultured with iSOX9-astrocytes are indistinguishable from gold-standard murine primary cultures. The high yield, fast timing and the possibility to cryopreserve iSOX9-astrocytes without losing functional properties makes them suitable for scaled-up production for high-throughput analyses. Our findings represent a step forward to an all-human iPSC-derived neural model for drug development in neuroscience and towards the reduction of animal use in biomedical research.


Subject(s)
Astrocytes , Neural Stem Cells , Animals , Astrocytes/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Mice , Neural Stem Cells/physiology , Neurogenesis/physiology , Neurons/cytology , SOX9 Transcription Factor/metabolism
11.
Biochim Biophys Acta Mol Cell Res ; 1868(6): 118997, 2021 05.
Article in English | MEDLINE | ID: mdl-33711363

ABSTRACT

The family of B-cell lymphoma-2 (Bcl-2) proteins exerts key functions in cellular health. Bcl-2 primarily acts in mitochondria where it controls the initiation of apoptosis. However, during the last decades, it has become clear that this family of proteins is also involved in controlling intracellular Ca2+ signaling, a critical process for the function of most cell types, including neurons. Several anti- and pro-apoptotic Bcl-2 family members are expressed in neurons and impact neuronal function. Importantly, expression levels of neuronal Bcl-2 proteins are affected by age. In this review, we focus on the emerging roles of Bcl-2 proteins in neuronal cells. Specifically, we discuss how their dysregulation contributes to the onset, development, and progression of neurodegeneration in the context of Alzheimer's disease (AD). Aberrant Ca2+ signaling plays an important role in the pathogenesis of AD, and we propose that dysregulation of the Bcl-2-Ca2+ signaling axis may contribute to the progression of AD and that herein, Bcl-2 may constitute a potential therapeutic target for the treatment of AD.


Subject(s)
Alzheimer Disease/metabolism , Calcium Signaling , Neurons/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Age Factors , Disease Progression , Gene Expression Regulation , Humans
12.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33621213

ABSTRACT

Cx43, a major cardiac connexin, forms precursor hemichannels that accrue at the intercalated disc to assemble as gap junctions. While gap junctions are crucial for electrical conduction in the heart, little is known about the potential roles of hemichannels. Recent evidence suggests that inhibiting Cx43 hemichannel opening with Gap19 has antiarrhythmic effects. Here, we used multiple electrophysiology, imaging, and super-resolution techniques to understand and define the conditions underlying Cx43 hemichannel activation in ventricular cardiomyocytes, their contribution to diastolic Ca2+ release from the sarcoplasmic reticulum, and their impact on electrical stability. We showed that Cx43 hemichannels were activated during diastolic Ca2+ release in single ventricular cardiomyocytes and cardiomyocyte cell pairs from mice and pigs. This activation involved Cx43 hemichannel Ca2+ entry and coupling to Ca2+ release microdomains at the intercalated disc, resulting in enhanced Ca2+ dynamics. Hemichannel opening furthermore contributed to delayed afterdepolarizations and triggered action potentials. In single cardiomyocytes, cardiomyocyte cell pairs, and arterially perfused tissue wedges from failing human hearts, increased hemichannel activity contributed to electrical instability compared with nonfailing rejected donor hearts. We conclude that microdomain coupling between Cx43 hemichannels and Ca2+ release is a potentially novel, targetable mechanism of cardiac arrhythmogenesis in heart failure.


Subject(s)
Calcium Signaling , Calcium/metabolism , Connexin 43/metabolism , Heart Ventricles/metabolism , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Connexin 43/genetics , Gap Junctions/genetics , Gap Junctions/metabolism , Mice , Mice, Knockout , Sarcoplasmic Reticulum/genetics , Swine
13.
Cell Calcium ; 92: 102291, 2020 12.
Article in English | MEDLINE | ID: mdl-33099169

ABSTRACT

The construction of a low affinity Ca2+-probe that locates to the cell cortex and cell surface wrinkles, is described called. EPIC3 (ezrin-protein indicator of Ca2+). The novel probe is a fusion of CEPIA3 with ezrin, and is used in combination with a Ca2+-insensitive probe, ezrin-mCherry, both of which locate at the cell cortex. EPIC3 was used to monitor the effect of Ca2+ influx on intra-wrinkle Ca2+ in the macrophage cell line, RAW 264.7. During experimentally-induced Ca2+influx, EPIC3 reported Ca2+ concentrations at the cell cortex in the region of 30-50 µM, with peak locations towards the tips of wrinkles reaching 80 µM. These concentrations were associated with cleavage of ezrin (a substrate for the Ca2+ activated protease calpain-1) and released the C-terminal fluors. The cortical Ca2+ levels, restricted to near the site of phagocytic cup formation and pseudopodia extension during phagocytosis also reached high levels (50-80 µM) during phagocytosis. As phagocytosis was completed, hotspots of Ca2+ near the phagosome were also observed.


Subject(s)
Calcium/metabolism , Cells/metabolism , Phagocytosis , Animals , Cell Proliferation , Cell Shape , Cytoskeletal Proteins/metabolism , Indicators and Reagents , Mice , RAW 264.7 Cells , Subcellular Fractions/metabolism
14.
Cell Death Dis ; 11(8): 654, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32811811

ABSTRACT

Contractile myofiber units are mainly composed of thick myosin and thin actin (F-actin) filaments. F-Actin interacts with Microtubule Associated Monooxygenase, Calponin And LIM Domain Containing 2 (MICAL2). Indeed, MICAL2 modifies actin subunits and promotes actin filament turnover by severing them and preventing repolymerization. In this study, we found that MICAL2 increases during myogenic differentiation of adult and pluripotent stem cells (PSCs) towards skeletal, smooth and cardiac muscle cells and localizes in the nucleus of acute and chronic regenerating muscle fibers. In vivo delivery of Cas9-Mical2 guide RNA complexes results in muscle actin defects and demonstrates that MICAL2 is essential for skeletal muscle homeostasis and functionality. Conversely, MICAL2 upregulation shows a positive impact on skeletal and cardiac muscle commitments. Taken together these data demonstrate that modulations of MICAL2 have an impact on muscle filament dynamics and its fine-tuned balance is essential for the regeneration of muscle tissues.


Subject(s)
Cytoskeletal Proteins/metabolism , Muscle Contraction/physiology , Myosins/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/physiology , Actins/metabolism , Actins/physiology , Animals , Cell Differentiation/physiology , Cytoskeletal Proteins/physiology , Cytoskeleton/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Muscle Development/physiology , Muscle, Skeletal/metabolism , Muscle, Smooth/physiology , Myosins/physiology
15.
Article in English | MEDLINE | ID: mdl-31501195

ABSTRACT

The pro- and antiapoptotic proteins belonging to the B-cell lymphoma-2 (Bcl-2) family exert a critical control over cell-death processes by enabling or counteracting mitochondrial outer membrane permeabilization. Beyond this mitochondrial function, several Bcl-2 family members have emerged as critical modulators of intracellular Ca2+ homeostasis and dynamics, showing proapoptotic and antiapoptotic functions. Bcl-2 family proteins specifically target several intracellular Ca2+-transport systems, including organellar Ca2+ channels: inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), Ca2+-release channels mediating Ca2+ flux from the endoplasmic reticulum, as well as voltage-dependent anion channels (VDACs), which mediate Ca2+ flux across the mitochondrial outer membrane into the mitochondria. Although the formation of protein complexes between Bcl-2 proteins and these channels has been extensively studied, a major advance during recent years has been elucidating the complex interaction of Bcl-2 proteins with IP3Rs. Distinct interaction sites for different Bcl-2 family members were identified in the primary structure of IP3Rs. The unique molecular profiles of these Bcl-2 proteins may account for their distinct functional outcomes when bound to IP3Rs. Furthermore, Bcl-2 inhibitors used in cancer therapy may affect IP3R function as part of their proapoptotic effect and/or as an adverse effect in healthy cells.


Subject(s)
Calcium/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Apoptosis , Endoplasmic Reticulum/metabolism , Fibroblasts/metabolism , Homeostasis , Humans , Mice , Mitochondria/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Domains , Voltage-Dependent Anion Channel 1/metabolism , bcl-X Protein/metabolism
16.
Adv Exp Med Biol ; 1131: 243-270, 2020.
Article in English | MEDLINE | ID: mdl-31646513

ABSTRACT

The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a Ca2+-release channel mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms are responsible for the generation of intracellular Ca2+ signals that may spread across the entire cell or occur locally in so-called microdomains. Because of their ubiquitous expression, these channels are involved in the regulation of a plethora of cellular processes, including cell survival and cell death. To exert their proper function a fine regulation of their activity is of paramount importance. In this review, we will highlight the recent advances in the structural analysis of the IP3R and try to link these data with the newest information concerning IP3R activation and regulation. A special focus of this review will be directed towards the regulation of the IP3R by protein-protein interaction. Especially the protein family formed by calmodulin and related Ca2+-binding proteins and the pro- and anti-apoptotic/autophagic Bcl-2-family members will be highlighted. Finally, recently identified and novel IP3R regulatory proteins will be discussed. A number of these interactions are involved in cancer development, illustrating the potential importance of modulating IP3R-mediated Ca2+ signaling in cancer treatment.


Subject(s)
Gene Expression Regulation, Neoplastic , Inositol 1,4,5-Trisphosphate Receptors , Calcium Signaling , Cell Survival/genetics , Endoplasmic Reticulum/metabolism , Humans , Inositol 1,4,5-Trisphosphate Receptors/chemistry , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Protein Binding , Proto-Oncogene Proteins c-bcl-2/metabolism
17.
Cell Calcium ; 83: 102076, 2019 11.
Article in English | MEDLINE | ID: mdl-31491643

ABSTRACT

L-asparaginase treatment is used in the clinic to treat acute lymphoblastic leukemia (ALL) patients. Lee et al. (2019, Blood 133:2222-2232) demonstrated that L-asparaginase induces apoptosis by activating inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ signaling in a Huntingin-associated protein 1 (HAP1)-dependent manner. Moreover, HAP1 levels inversely correlate with the sensitivity of the ALL cells to L-asparaginase. HAP1 can therefore be used as biomarker for evaluating L-asparaginase resistance.


Subject(s)
Asparaginase/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Antineoplastic Agents/therapeutic use , Apoptosis , Asparaginase/therapeutic use , Biomarkers, Pharmacological/metabolism , Calcium Signaling , Humans , Nerve Tissue Proteins/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tumor Cells, Cultured
18.
Drug Discov Today ; 24(5): 1092-1103, 2019 05.
Article in English | MEDLINE | ID: mdl-30910738

ABSTRACT

Intracellular Ca2+-flux systems located at the ER-mitochondrial axis govern mitochondrial Ca2+ balance and cell fate. Multiple yet incurable pathologies are characterized by insufficient or excessive Ca2+ fluxes toward the mitochondria, in turn leading to aberrant cell life or death dynamics. The discovery and ongoing molecular characterization of the main interorganellar Ca2+ gateways have resulted in a novel class of peptide tools able to regulate relevant protein-protein interactions (PPIs) underlying this signaling scenario. Here, we review peptides, molecularly derived from Ca2+-flux systems or their accessory proteins. We discuss how they alter Ca2+-signaling protein complexes and modulate cell survival in light of their forthcoming therapeutic applications.


Subject(s)
Calcium Signaling/drug effects , Calcium/metabolism , Endoplasmic Reticulum/drug effects , Mitochondria/drug effects , Peptides/pharmacology , Animals , Endoplasmic Reticulum/metabolism , Humans , Mitochondria/metabolism , Peptides/therapeutic use
19.
Br J Pharmacol ; 176(22): 4402-4415, 2019 11.
Article in English | MEDLINE | ID: mdl-30266036

ABSTRACT

BACKGROUND AND PURPOSE: Many cancer cells depend on anti-apoptotic B-cell lymphoma 2 (Bcl-2) proteins for their survival. Bcl-2 antagonism through Bcl-2 homology 3 (BH3) mimetics has emerged as a novel anti-cancer therapy. ABT-199 (Venetoclax), a recently developed BH3 mimetic that selectively inhibits Bcl-2, was introduced into the clinic for treatment of relapsed chronic lymphocytic leukaemia. Early generations of Bcl-2 inhibitors evoked sustained Ca2+ responses in pancreatic acinar cells (PACs) inducing cell death. Therefore, BH3 mimetics could potentially be toxic for the pancreas when used to treat cancer. Although ABT-199 was shown to kill Bcl-2-dependent cancer cells without affecting intracellular Ca2+ signalling, its effects on PACs have not yet been determined. Hence, it is essential and timely to assess whether this recently approved anti-leukaemic drug might potentially have pancreatotoxic effects. EXPERIMENTAL APPROACH: Single-cell Ca2+ measurements and cell death analysis were performed on isolated mouse PACs. KEY RESULTS: Inhibition of Bcl-2 via ABT-199 did not elicit intracellular Ca2+ signalling on its own or potentiate Ca2+ signalling induced by physiological/pathophysiological stimuli in PACs. Although ABT-199 did not affect cell death in PACs, under conditions that killed ABT-199-sensitive cancer cells, cytosolic Ca2+ extrusion was slightly enhanced in the presence of ABT-199. In contrast, inhibition of Bcl-xL potentiated pathophysiological Ca2+ responses in PACs, without exacerbating cell death. CONCLUSION AND IMPLICATIONS: Our results demonstrate that apart from having a modest effect on cytosolic Ca2+ extrusion, ABT-199 does not substantially alter intracellular Ca2+ homeostasis in normal PACs and should be safe for the pancreas during cancer treatment. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.


Subject(s)
Acinar Cells/drug effects , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Calcium Signaling/drug effects , Sulfonamides/pharmacology , Acinar Cells/metabolism , Animals , Male , Mice, Inbred C57BL , Pancreas/cytology , Peptide Fragments , Proto-Oncogene Proteins , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
20.
Trends Biochem Sci ; 43(10): 741-744, 2018 10.
Article in English | MEDLINE | ID: mdl-30170888

ABSTRACT

Acute pancreatitis is characterized by ATP deficiency and sustained Ca2+ overload in pancreatic acinar cells, leading to premature zymogen activation, auto-digestion of the pancreas, and necrosis. Recent research reveals a rational approach to ameliorate disease through galactose feeding, bypassing hexokinases to restore ATP levels and Ca2+ homeostasis, thereby reducing disease markers.


Subject(s)
Diet, Carbohydrate Loading , Galactose , Acute Disease , Animals , Mice , Pancreatitis
SELECTION OF CITATIONS
SEARCH DETAIL
...