Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Cell Mol Biol Lett ; 29(1): 41, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532366

ABSTRACT

Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/ß-catenin, TGF-ß/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.


Subject(s)
Phosphatidylinositol 3-Kinases , Signal Transduction , AC133 Antigen/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Membrane/metabolism , Neoplastic Stem Cells/metabolism
3.
Front Pharmacol ; 13: 976955, 2022.
Article in English | MEDLINE | ID: mdl-36160437

ABSTRACT

Tyrosine kinase inhibitors (TKIs) are frequently used in combined therapy to enhance treatment efficacy and overcome drug resistance. The present study analyzed the effects of three inhibitors, sunitinib, gefitinib, and lapatinib, combined with iron-chelating agents, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) or di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC). Simultaneous administration of the drugs consistently resulted in synergistic and/or additive activities against the cell lines derived from the most frequent types of pediatric solid tumors. The results of a detailed analysis of cell signaling in the neuroblastoma cell lines revealed that TKIs inhibited the phosphorylation of the corresponding receptor tyrosine kinases, and thiosemicarbazones downregulated the expression of epidermal growth factor receptor, platelet-derived growth factor receptor, and insulin-like growth factor-1 receptor, leading to a strong induction of apoptosis. Marked upregulation of the metastasis suppressor N-myc downstream regulated gene-1 (NDRG1), which is known to be activated and upregulated by thiosemicarbazones in adult cancers, was also detected in thiosemicarbazone-treated neuroblastoma cells. Importantly, these effects were more pronounced in the cells treated with drug combinations, especially with the combinations of lapatinib with thiosemicarbazones. Therefore, these results provide a rationale for novel strategies combining iron-chelating agents with TKIs in therapy of pediatric solid tumors.

4.
Int J Mol Sci ; 23(15)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35955683

ABSTRACT

Anticancer therapy by anthracyclines often leads to the development of multidrug resistance (MDR), with subsequent treatment failure. Thiosemicarbazones have been previously suggested as suitable anthracycline partners due to their ability to overcome drug resistance through dual Pgp-dependent cytotoxicity-inducing effects. Here, we focused on combining anthracyclines (doxorubicin, daunorubicin, and mitoxantrone) and two thiosemicarbazones (DpC and Dp44mT) for treating cell types derived from the most frequent pediatric solid tumors. Our results showed synergistic effects for all combinations of treatments in all tested cell types. Nevertheless, further experiments revealed that this synergism was independent of Pgp expression but rather resulted from impaired DNA repair control leading to cell death via mitotic catastrophe. The downregulation of checkpoint kinase 1 (CHEK1) expression by thiosemicarbazones and the ability of both types of agents to induce double-strand breaks in DNA may explain the Pgp-independent synergism between anthracyclines and thiosemicarbazones. Moreover, the concomitant application of these agents was found to be the most efficient approach, achieving the strongest synergistic effect with lower concentrations of these drugs. Overall, our study identified a new mechanism that offers an avenue for combining thiosemicarbazones with anthracyclines to treat tumors regardless the Pgp status.


Subject(s)
Anthracyclines , Thiosemicarbazones , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Anthracyclines/pharmacology , Antibiotics, Antineoplastic , Cell Line, Tumor , Checkpoint Kinase 1/metabolism , Child , DNA Damage , Doxorubicin/metabolism , Doxorubicin/pharmacology , Humans , Thiosemicarbazones/pharmacology , Topoisomerase II Inhibitors
5.
Pediatr Blood Cancer ; 69(2): e29401, 2022 02.
Article in English | MEDLINE | ID: mdl-34693628

ABSTRACT

BACKGROUND: Wilms tumor is the most common childhood kidney cancer. Two distinct histological subtypes of Wilms tumor have been described: tumors lacking anaplasia (the favorable subtype) and tumors displaying anaplastic features (the unfavorable subtype). Children with favorable disease generally have a very good prognosis, whereas those with anaplasia are oftentimes refractory to standard treatments and suffer poor outcomes, leading to an unmet clinical need. MYCN dysregulation has been associated with a number of pediatric cancers including Wilms tumor. PROCEDURES: In this context, we undertook a functional genomics approach to uncover novel therapeutic strategies for those patients with anaplastic Wilms tumor. Genomic analysis and in vitro experimentation demonstrate that cell growth can be reduced by modulating MYCN overexpression via bromodomain 4 (BRD4) inhibition in both anaplastic and nonanaplastic Wilms tumor models. RESULTS: We observed a time-dependent reduction of MYCN and MYCC protein levels upon BRD4 inhibition in Wilms tumor cell lines, which led to cell death and proliferation suppression. BRD4 inhibition significantly reduced tumor volumes in Wilms tumor patient-derived xenograft (PDX) mouse models. CONCLUSIONS: We suggest that AZD5153, a novel dual-BRD4 inhibitor, can reduce MYCN levels in both anaplastic and nonanaplastic Wilms tumor cell lines, reduces tumor volume in Wilms tumor PDXs, and should be further explored for its therapeutic potential.


Subject(s)
Kidney Neoplasms , Wilms Tumor , Anaplasia/genetics , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Child , Down-Regulation , Female , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Male , Mice , N-Myc Proto-Oncogene Protein/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Wilms Tumor/drug therapy , Wilms Tumor/genetics , Wilms Tumor/metabolism
6.
Cancers (Basel) ; 13(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34298757

ABSTRACT

Giant-cell tumor of bone (GCTB) is an intermediate type of primary bone tumor characterized by locally aggressive growth with metastatic potential. The aim of this study was to identify new druggable targets among the cell signaling molecules involved in GCTB tumorigenesis. Profiles of activated signaling proteins in fresh-frozen tumor samples and tumor-derived cell lines were determined using phosphoprotein arrays. Analysis of the obtained data revealed epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor beta (PDGFRß) as potential targets, but only the PDGFR inhibitor sunitinib caused a considerable decrease in stromal cell viability in vitro. Furthermore, in the case of a 17-year-old patient suffering from GCTB, we showed that the addition of sunitinib to the standard treatment of GCTB with the monoclonal antibody denosumab resulted in the complete depletion of multinucleated giant cells and mononuclear stromal cells in the tumor tissue. To summarize, the obtained data showed that a specific receptor tyrosine kinase (RTK) signaling pattern is activated in GCTB cells and plays an important role in the regulation of cell proliferation. Thus, activated RTKs and their downstream signaling pathways represent useful targets for precision treatment with low-molecular-weight inhibitors or with other types of modern biological therapy.

7.
Cell Rep ; 35(2): 108982, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852837

ABSTRACT

Impairment of the p53 pathway is a critical event in cancer. Therefore, reestablishing p53 activity has become one of the most appealing anticancer therapeutic strategies. Here, we disclose the p53-activating anticancer drug (3S)-6,7-bis(hydroxymethyl)-5-methyl-3-phenyl-1H,3H-pyrrolo[1,2-c]thiazole (MANIO). MANIO demonstrates a notable selectivity to the p53 pathway, activating wild-type (WT)p53 and restoring WT-like function to mutant (mut)p53 in human cancer cells. MANIO directly binds to the WT/mutp53 DNA-binding domain, enhancing the protein thermal stability, DNA-binding ability, and transcriptional activity. The high efficacy of MANIO as an anticancer agent toward cancers harboring WT/mutp53 is further demonstrated in patient-derived cells and xenograft mouse models of colorectal cancer (CRC), with no signs of undesirable side effects. MANIO synergizes with conventional chemotherapeutic drugs, and in vitro and in vivo studies predict its adequate drug-likeness and pharmacokinetic properties for a clinical candidate. As a single agent or in combination, MANIO will advance anticancer-targeted therapy, particularly benefiting CRC patients harboring distinct p53 status.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/drug effects , Colorectal Neoplasms/drug therapy , Pyrroles/pharmacology , Thiazoles/pharmacology , Tumor Suppressor Protein p53/genetics , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Doxorubicin/pharmacology , Drug Discovery , Drug Synergism , Female , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic , HCT116 Cells , Humans , Mice , Mice, Nude , Protein Binding , Pyrroles/chemical synthesis , Thiazoles/chemical synthesis , Tumor Suppressor Protein p53/agonists , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
8.
Int J Mol Sci ; 23(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35008802

ABSTRACT

Despite constant advances in the field of pediatric oncology, the survival rate of high-risk neuroblastoma patients remains poor. The molecular and genetic features of neuroblastoma, such as MYCN amplification and stemness status, have established themselves not only as potent prognostic and predictive factors but also as intriguing targets for personalized therapy. Novel thiosemicarbazones target both total level and activity of a number of proteins involved in some of the most important signaling pathways in neuroblastoma. In this study, we found that di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) potently decreases N-MYC in MYCN-amplified and c-MYC in MYCN-nonamplified neuroblastoma cell lines. Furthermore, DpC succeeded in downregulating total EGFR and phosphorylation of its most prominent tyrosine residues through the involvement of NDRG1, a positive prognostic marker in neuroblastoma, which was markedly upregulated after thiosemicarbazone treatment. These findings could provide useful knowledge for the treatment of MYC-driven neuroblastomas that are unresponsive to conventional therapies.


Subject(s)
Iron Chelating Agents/pharmacology , Neuroblastoma/metabolism , Pyridines/pharmacology , Signal Transduction , Thiosemicarbazones/pharmacology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Shape/drug effects , Down-Regulation/drug effects , ErbB Receptors/metabolism , Gene Amplification/drug effects , Gene Silencing/drug effects , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Models, Biological , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/pathology , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Stress, Physiological/drug effects , Up-Regulation/drug effects
9.
Cancers (Basel) ; 12(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33334021

ABSTRACT

Combining low-dose chemotherapies is a strategy for designing less toxic and more potent childhood cancer treatments. We examined the effects of combining the novel thiosemicarbazones, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), or its analog, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), with the standard chemotherapies, celecoxib (CX), etoposide (ETO), or temozolomide (TMZ). These combinations were analyzed for synergism to inhibit proliferation of three pediatric tumor cell-types, namely osteosarcoma (Saos-2), medulloblastoma (Daoy) and neuroblastoma (SH-SY5Y). In terms of mechanistic dissection, this study discovered novel thiosemicarbazone targets not previously identified and which are important for considering possible drug combinations. In this case, DpC and Dp44mT caused: (1) up-regulation of a major protein target of CX, namely cyclooxygenase-2 (COX-2); (2) down-regulation of the DNA repair protein, O6-methylguanine DNA methyltransferase (MGMT), which is known to affect TMZ resistance; (3) down-regulation of mismatch repair (MMR) proteins, MSH2 and MSH6, in Daoy and SH-SY5Y cells; and (4) down-regulation in all three cell-types of the MMR repair protein, MLH1, and also topoisomerase 2α (Topo2α), the latter of which is an ETO target. While thiosemicarbazones up-regulate the metastasis suppressor, NDRG1, in adult cancers, it is demonstrated herein for the first time that they induce NDRG1 in all three pediatric tumor cell-types, validating its role as a potential target. In fact, siRNA studies indicated that NDRG1 was responsible for MGMT down-regulation that may prevent TMZ resistance. Examining the effects of combining thiosemicarbazones with CX, ETO, or TMZ, the most promising synergism was obtained using CX. Of interest, a positive relationship was observed between NDRG1 expression of the cell-type and the synergistic activity observed in the combination of thiosemicarbazones and CX. These studies identify novel thiosemicarbazone targets relevant to childhood cancer combination chemotherapy.

10.
Int J Mol Sci ; 21(18)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32916897

ABSTRACT

The main objective of this study was to analyze changes in the antiproliferative effect of vitamin D3, in the form of calcitriol and calcidiol, via its combined application with all-trans retinoic acid (ATRA) in osteosarcoma cell lines. The response to treatment with calcitriol and calcidiol alone was specific for each cell line. Nevertheless, we observed an enhanced effect of combined treatment with ATRA and calcitriol in the majority of the cell lines. Although the levels of respective nuclear receptors did not correlate with the sensitivity of cells to these drugs, vitamin D receptor (VDR) upregulation induced by ATRA was found in cell lines that were the most sensitive to the combined treatment. In addition, all these cell lines showed high endogenous levels of retinoic acid receptor α (RARα). Our study confirmed that the combination of calcitriol and ATRA can achieve enhanced antiproliferative effects in human osteosarcoma cell lines in vitro. Moreover, we provide the first evidence that ATRA is able to upregulate VDR expression in human osteosarcoma cells. According to our results, the endogenous levels of RARα and VDR could be used as a predictor of possible synergy between ATRA and calcitriol in osteosarcoma cells.


Subject(s)
Antineoplastic Agents/administration & dosage , Calcifediol/administration & dosage , Calcitriol/administration & dosage , Osteosarcoma/drug therapy , Tretinoin/administration & dosage , Vitamins/administration & dosage , Antineoplastic Combined Chemotherapy Protocols , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Osteosarcoma/metabolism , Receptors, Calcitriol/metabolism , Retinoic Acid Receptor alpha/metabolism
11.
Int J Mol Sci ; 21(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365759

ABSTRACT

Tyrosine kinase inhibitors (TKIs) are being increasingly used to treat various malignancies. Although they were designed to target aberrant tyrosine kinases, they are also intimately linked with the mechanisms of multidrug resistance (MDR) in cancer cells. MDR-related solute carrier (SLC) and ATB-binding cassette (ABC) transporters are responsible for TKI uptake and efflux, respectively. However, the role of TKIs appears to be dual because they can act as substrates and/or inhibitors of these transporters. In addition, several TKIs have been identified to be sequestered into lysosomes either due to their physiochemical properties or via ABC transporters expressed on the lysosomal membrane. Since the development of MDR represents a great concern in anticancer treatment, it is important to elucidate the interactions of TKIs with MDR-related transporters as well as to improve the properties that would prevent TKIs from diffusing into lysosomes. These findings not only help to avoid MDR, but also help to define the possible impact of combining TKIs with other anticancer drugs, leading to more efficient therapy and fewer adverse effects in patients.


Subject(s)
Drug Repositioning , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Protein Kinase Inhibitors/pharmacology , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Biological Transport , Clinical Trials as Topic , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Protein Kinase Inhibitors/therapeutic use , Solute Carrier Proteins/genetics , Solute Carrier Proteins/metabolism , Treatment Outcome
12.
Cells ; 9(3)2020 03 11.
Article in English | MEDLINE | ID: mdl-32168958

ABSTRACT

NANOG is a transcription factor involved in the regulation of pluripotency and stemness. The functional paralog of NANOG, NANOGP8, differs from NANOG in only three amino acids and exhibits similar reprogramming activity. Given the transcriptional regulatory role played by NANOG, the nuclear localization of NANOG/NANOGP8 has primarily been considered to date. In this study, we investigated the intriguing extranuclear localization of NANOG and demonstrated that a substantial pool of NANOG/NANOGP8 is localized at the centrosome. Using double immunofluorescence, the colocalization of NANOG protein with pericentrin was identified by two independent anti-NANOG antibodies among 11 tumor and non-tumor cell lines. The validity of these observations was confirmed by transient expression of GFP-tagged NANOG, which also colocalized with pericentrin. Mass spectrometry of the anti-NANOG immunoprecipitated samples verified the antibody specificity and revealed the expression of both NANOG and NANOGP8, which was further confirmed by real-time PCR. Using cell fractionation, we show that a considerable amount of NANOG protein is present in the cytoplasm of RD and NTERA-2 cells. Importantly, cytoplasmic NANOG was unevenly distributed at the centrosome pair during the cell cycle and colocalized with the distal region of the mother centriole, and its presence was markedly associated with centriole maturation. Along with the finding that the centrosomal localization of NANOG/NANOGP8 was detected in various tumor and non-tumor cell types, these results provide the first evidence suggesting a common centrosome-specific role of NANOG.


Subject(s)
Centrioles/immunology , Centrosome/immunology , Nanog Homeobox Protein/immunology , Cell Proliferation , Humans , Transcription Factors , Transfection
13.
Cancers (Basel) ; 12(1)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31941033

ABSTRACT

Serial xenotransplantation of sorted cancer cells in immunodeficient mice remains the most complex test of cancer stem cell (CSC) phenotype. However, we have demonstrated in various sarcomas that putative CSC surface markers fail to identify CSCs, thereby impeding the isolation of CSCs for subsequent analyses. Here, we utilized serial xenotransplantation of unsorted rhabdomyosarcoma cells in NOD/SCID gamma (NSG) mice as a proof-of-principle platform to investigate the molecular signature of CSCs. Indeed, serial xenotransplantation steadily enriched for rhabdomyosarcoma stem-like cells characterized by enhanced aldehyde dehydrogenase activity and increased colony and sphere formation capacity in vitro. Although the expression of core pluripotency factors (SOX2, OCT4, NANOG) and common CSC markers (CD133, ABCG2, nestin) was maintained over the passages in mice, gene expression profiling revealed gradual changes in several stemness regulators and genes linked with undifferentiated myogenic precursors, e.g., SOX4, PAX3, MIR145, and CDH15. Moreover, we identified the induction of a hybrid epithelial/mesenchymal gene expression signature that was associated with the increase in CSC number. In total, 60 genes related to epithelial or mesenchymal traits were significantly altered upon serial xenotransplantation. In silico survival analysis based on the identified potential stemness-associated genes demonstrated that serial xenotransplantation of unsorted rhabdomyosarcoma cells in NSG mice might be a useful tool for the unbiased enrichment of CSCs and the identification of novel CSC-specific targets. Using this approach, we provide evidence for a recently proposed link between the hybrid epithelial/mesenchymal phenotype and cancer stemness.

14.
Front Oncol ; 9: 1221, 2019.
Article in English | MEDLINE | ID: mdl-31803613

ABSTRACT

The survival rate for patients with high-risk neuroblastomas remains poor despite new improvements in available therapeutic modalities. A detailed understanding of the mechanisms underlying clinical responses to multimodal treatment is one of the important aspects that may provide precision in the prediction of a patient's clinical outcome. Our study was designed as a detailed comparative analysis of five selected proteins (DDX39A, HMGA1, HOXC9, NF1, and PBX1) in one cohort of patients using the same methodical approaches. These proteins were already reported separately as related to the resistance or sensitivity to retinoids and as useful prognostic markers of survival probability. In the cohort of 19 patients suffering from high-risk neuroblastomas, we analyzed initial immunohistochemistry samples obtained by diagnostic biopsy and post-induction samples taken after the end of induction therapy. The expression of DDX39A, HMGA1, HOXC9, and NF1 showed varied patterns with almost no differences between responders and non-responders. Nevertheless, we found very interesting results for PBX1: non-responders had significantly higher expression levels of this protein in the initial tumor samples when compared with responders; this expression pattern changed inversely in the post-induction samples, and this change was also statistically significant. Moreover, our results from survival analyses reveal the prognostic value of PBX1, NF1, and HOXC9 expression in neuroblastoma tissue. In addition to the prognostic importance of PBX1, NF1, and HOXC9 proteins, our results demonstrated that PBX1 could be used for the prediction of the clinical response to induction chemotherapy in patients suffering from high-risk neuroblastoma.

15.
Front Oncol ; 9: 930, 2019.
Article in English | MEDLINE | ID: mdl-31616636

ABSTRACT

The specific targeting of signal transduction by low-molecular-weight inhibitors or monoclonal antibodies represents a very promising personalized treatment strategy in pediatric oncology. In this study, we present the successful and clinically relevant use of commercially available phospho-protein arrays for analyses of the phosphorylation profiles of a broad spectrum of receptor tyrosine kinases and their downstream signaling proteins in tumor tissue samples. Although these arrays were made for research purposes on human biological samples, they have already been used by several authors to profile various tumor types. Our study performed a systematic analysis of the advantages and pitfalls of the use of this method for personalized clinical medicine. In certain clinical cases and their series, we demonstrated the important aspects of data processing and evaluation, the use of phospho-protein arrays for single sample and serial sample analyses, and the validation of obtained results by immunohistochemistry, as well as the possibilities of this method for the hierarchical clustering of pediatric solid tumors. Our results clearly show that phospho-protein arrays are apparently useful for the clinical consideration of druggable molecular targets within a specific tumor. Thus, their potential validation for diagnostic purposes may substantially improve the personalized approach in the treatment of relapsed or refractory solid tumors.

16.
Front Oncol ; 9: 644, 2019.
Article in English | MEDLINE | ID: mdl-31380281

ABSTRACT

Introduction: The individualization of treatment is attractive, especially in children with high-risk cancer. In such a rare and very heterogeneous group of diseases, large population-based clinical randomized trials are not feasible without international collaboration. We therefore propose comparative patient series analysis in a real-life scenario. Methods: Open cohort observational study, comparative analysis. Seventy patients with high-risk solid tumors diagnosed between 2003 and 2015 and in whom the treatment was individualized either empirically or based on biomarkers were analyzed. The heterogeneity of the cohort and repeated measurements were advantageously utilized to increase effective sample size using appropriate statistical tools. Results: We demonstrated a beneficial effect of empirically given low-dose metronomic chemotherapy (HR 0.46 for relapses, p = 0.017) as well as various repurposed or targeted agents (HR 0.15 for deaths, p = 0.004) in a real-life scenario. However, targeted agents given on the basis of limited biological information were not beneficial. Conclusions: Comparative patient series analysis provides institutional-level evidence for treatment individualization in high-risk pediatric malignancies. Our findings emphasize the need for a comprehensive, multi omics assessment of the tumor and the host as well whenever molecularly driven targeted therapies are being considered. Low-dose metronomic chemotherapy or local control of the disease may be a more rational option in situations where targeted treatment cannot be justified by robust evidence and comprehensive biological information. "Targeted drugs" may be given empirically with a realistic benefit expectation when based on robust rationale.

17.
PLoS One ; 14(6): e0218269, 2019.
Article in English | MEDLINE | ID: mdl-31188873

ABSTRACT

Although the administration of retinoids represents an important part of treatment for children suffering from high-risk neuroblastomas, approximately 50% of these patients do not respond to this therapy or develop resistance to retinoids during treatment. Our study focused on the comparative analysis of the expression of five genes and corresponding proteins (DDX39A, HMGA1, HMGA2, HOXC9 and PBX1) that have recently been discussed as possible predictive biomarkers of clinical response to retinoid differentiation therapy. Expression of these five candidate biomarkers was evaluated at both the mRNA and protein level in the same subset of 8 neuroblastoma cell lines after treatment with natural or synthetic retinoids. We found that the cell lines that were HMGA2-positive and/or HOXC9-negative have a reduced sensitivity to retinoids. Furthermore, the experiments revealed that the retinoid-sensitive cell lines showed a uniform pattern of change after treatment with both natural and sensitive retinoids: increased DDX39A and decreased PBX1 protein levels. Our results showed that in NBL cells, these putative protein biomarkers are associated with sensitivity or resistance to retinoids, and their endogenous or induced expression can distinguish between these two phenotypes.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Pharmacological/metabolism , Drug Resistance, Neoplasm/drug effects , Isotretinoin/pharmacology , Neuroblastoma/genetics , Tretinoin/analogs & derivatives , Tretinoin/pharmacology , Adolescent , Bexarotene/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Child , Child, Preschool , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Drug Resistance, Neoplasm/genetics , Female , Fenretinide/pharmacology , HMGA1a Protein/genetics , HMGA1a Protein/metabolism , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Infant , Infant, Newborn , Male , Nervous System Neoplasms/genetics , Nervous System Neoplasms/metabolism , Nervous System Neoplasms/pathology , Nervous System Neoplasms/surgery , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neuroblastoma/surgery , Paraffin Embedding , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Pre-B-Cell Leukemia Transcription Factor 1/metabolism , Tissue Fixation , Young Adult
18.
Cancer Lett ; 446: 90-102, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30664963

ABSTRACT

TAp73 is a key tumor suppressor protein, regulating the transcription of unique and shared p53 target genes with crucial roles in tumorigenesis and therapeutic response. As such, in tumors with impaired p53 signaling, like neuroblastoma, TAp73 activation represents an encouraging strategy, alternative to p53 activation, to suppress tumor growth and chemoresistance. In this work, we report a new TAp73-activating agent, the 1-carbaldehyde-3,4-dimethoxyxanthone (LEM2), with potent antitumor activity. Notably, LEM2 was able to release TAp73 from its interaction with both MDM2 and mutant p53, enhancing TAp73 transcriptional activity, cell cycle arrest, and apoptosis in p53-null and mutant p53-expressing tumor cells. Importantly, LEM2 displayed potent antitumor activity against patient-derived neuroblastoma cells, consistent with an activation of the TAp73 pathway. Additionally, potent synergistic effects were obtained for the combination of LEM2 with doxorubicin and cisplatin in patient-derived neuroblastoma cells. Collectively, besides its relevant contribution to the advance of TAp73 pharmacology, LEM2 may pave the way to improved therapeutic alternatives against neuroblastoma.


Subject(s)
Antineoplastic Agents/pharmacology , Neuroblastoma/drug therapy , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Protein p73/metabolism , Tumor Suppressor Protein p53/metabolism , Xanthones/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cisplatin/pharmacology , Doxorubicin/pharmacology , Drug Synergism , Gene Expression Regulation, Neoplastic , HCT116 Cells , HT29 Cells , Humans , Mutation , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Proto-Oncogene Proteins c-mdm2/genetics , Signal Transduction/drug effects , Tumor Protein p73/genetics , Tumor Suppressor Protein p53/genetics
19.
Front Oncol ; 9: 1436, 2019.
Article in English | MEDLINE | ID: mdl-31998633

ABSTRACT

Diffuse gliomas with K27M histone mutations (H3K27M glioma) are generally characterized by a fatal prognosis, particularly affecting the pediatric population. Based on the molecular heterogeneity observed in this tumor type, personalized treatment is considered to substantially improve therapeutic options. Therefore, clinical evidence for therapy, guided by comprehensive molecular profiling, is urgently required. In this study, we analyzed feasibility and clinical outcomes in a cohort of 12 H3K27M glioma cases treated at two centers. Patients were subjected to personalized treatment either at primary diagnosis or disease progression and received backbone therapy including focal irradiation. Molecular analyses included whole-exome sequencing of tumor and germline DNA, RNA-sequencing, and transcriptomic profiling. Patients were monitored with regular clinical as well as radiological follow-up. In one case, liquid biopsy of cerebrospinal fluid (CSF) was used. Analyses could be completed in 83% (10/12) and subsequent personalized treatment for one or more additional pharmacological therapies could be recommended in 90% (9/10). Personalized treatment included inhibition of the PI3K/AKT/mTOR pathway (3/9), MAPK signaling (2/9), immunotherapy (2/9), receptor tyrosine kinase inhibition (2/9), and retinoic receptor agonist (1/9). The overall response rate within the cohort was 78% (7/9) including one complete remission, three partial responses, and three stable diseases. Sustained responses lasting for 28 to 150 weeks were observed for cases with PIK3CA mutations treated with either miltefosine or everolimus and additional treatment with trametinib/dabrafenib in a case with BRAFV600E mutation. Immune checkpoint inhibitor treatment of a case with increased tumor mutational burden (TMB) resulted in complete remission lasting 40 weeks. Median time to progression was 29 weeks. Median overall survival (OS) in the personalized treatment cohort was 16.5 months. Last, we compared OS to a control cohort (n = 9) showing a median OS of 17.5 months. No significant difference between the cohorts could be detected, but long-term survivors (>2 years) were only present in the personalized treatment cohort. Taken together, we present the first evidence of clinical efficacy and an improved patient outcome through a personalized approach at least in selected cases of H3K27M glioma.

20.
Front Oncol ; 9: 1531, 2019.
Article in English | MEDLINE | ID: mdl-32117783

ABSTRACT

In order to identify reasons for treatment failures when using targeted therapies, we have analyzed the comprehensive molecular profiles of three relapsed, poor-prognosis Burkitt lymphoma cases. All three cases had resembling clinical presentation and histology and all three patients relapsed, but their outcomes differed significantly. The samples of their tumor tissue were analyzed using whole-exome sequencing, gene expression profiling, phosphoproteomic assays, and single-cell phosphoflow cytometry. These results explain different treatment responses of the three histologically identical but molecularly different tumors. Our findings support a personalized approach for patient with high risk, refractory, and rare diseases and may contribute to personalized and customized treatment efforts for patients with limited treatment options like relapsed/refractory Burkitt lymphoma. SUMMARY: The main aim of this study is to analyze three relapsed Burkitt lymphoma patients using a comprehensive molecular profiling, in order to explain their different outcomes and to propose a biomarker-based targeted treatment. In cases 1 and 3, the tumor tissue and the host were analyzed prospectively and appropriate target for the treatment was successfully implemented; however, in case 2, analyses become available only retrospectively and his empirically based rescue treatment did not hit the right target of his disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...