Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(1): 90-98, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38112183

ABSTRACT

While the immunomodulation effects of per- and polyfluoroalkyl substances (PFASs) are described on the level of clinical signs in epidemiological studies (e.g., suppressed antibody response after vaccination), the underlying mechanism has still not been fully elucidated. To reveal mechanisms of PFAS exposure on immunity, we investigated the genome-wide transcriptomic changes of peripheral blood mononuclear cells (PBMCs) responding to PFAS exposure (specifically, exposure to PFPA, PFOA, PFNA, PFDA, PFUnDA, PFHxS, and PFOS). Blood samples and the chemical load in the blood were analyzed under the cross-sectional CELSPAC: Young Adults study. The overall aim of the study was to identify sensitive gene sets and cellular pathways conserved for multiple PFAS chemicals. Transcriptome networks related to adaptive immunity were perturbed by multiple PFAS exposure (i.e., blood levels of at least four PFASs). Specifically, processes tightly connected with late B cell development, such as B cell receptor signaling, germinal center reactions, and plasma cell development, were shown to be affected. Our comprehensive transcriptome analysis identified the disruption of B cell development, specifically the impact on the maturation of antibody-secreting cells, as a potential mechanism underlying PFAS immunotoxicity.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Young Adult , Humans , Transcriptome , Cross-Sectional Studies , Leukocytes, Mononuclear , Czech Republic , Fluorocarbons/toxicity
2.
Chemosphere ; 341: 140004, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37652251

ABSTRACT

In recent decades, male infertility has been on the rise, largely attributed to exposure to chemicals with endocrine-disrupting properties. The adverse effects of disrupting androgen actions on the development and reproductive health of children and adolescents have been extensively studied. Flame retardants (FRs), used in consumer products to delay flammability, have been identified as antagonists of the androgen receptor (AR), potentially leading to adverse outcomes in male reproductive health later in life. This study examined the interaction of eight novel FRs with the AR, employing an in vitro AR-dependent luciferase reporter gene assay utilizing MDA-kb2 cells. The investigation revealed the anti-androgenic activity of tris(2,3-dibromopropyl) isocyanurate (TDBP-TAZTO), a frequently detected FR in the environment. Furthermore, TDBP-TAZTO contributed to anti-androgenic activity when combined with six other anti-androgenic FRs. The mixture effects were predicted by three commonly employed models: concentration addition (CA), generalized CA, and independent action, with the CA model showcasing the highest accuracy. This suggests that all FRs act through a similar mechanism, as further confirmed by in silico molecular docking, indicating limited synergy or antagonism. Importantly, in the mixtures, each FR contributed to the induction of anti-androgenic effects at concentrations below their individual effective concentrations in single exposures. This raises concern for public health, especially considering the co-detection of these FRs and their potential co-occurrence with other anti-androgenic chemicals like bisphenols. Therefore, our findings, along with previous research, strongly support the incorporation of combined effects of mixtures in risk assessment to efficiently safeguard population health.


Subject(s)
Androgen Antagonists , Flame Retardants , Child , Humans , Male , Adolescent , Androgen Antagonists/toxicity , Flame Retardants/toxicity , Molecular Docking Simulation , Androgens/pharmacology
3.
Article in English | MEDLINE | ID: mdl-35533547

ABSTRACT

The physiology of males and females can be vastly different, complicating interpretation of toxicological and physiological data. The objectives of this study were to elucidate the sex differences in the microbiome-gastrointestinal (GI) transcriptome of adult zebrafish. We compared microbial composition and diversity in both males and females fed the same diet and housed in the same environment. There were no sex-specific differences in weight gain nor gastrointestinal morphology based on histopathology. There was no difference in gut microbial diversity, richness (Shannon and Chao1 index) nor predicted functional composition of the microbiome between males and females. Prior to post-hoc correction, male zebrafish showed higher abundance for the bacterial families Erythrobacteraceae and Lamiaceae, both belonging to the phyla Actinobacteria and Proteobacteria. At the genus level, Lamia and Altererythrobacter were more dominant in males and an unidentified genus in Bacteroidetes was more abundant in females. There were 16 unique differentially expressed transcripts in the gastrointestinal tissue between male and female zebrafish (FDR corrected, p < 0.05). Relative to males, the mRNA expression for trim35-9, slc25a48, chchd3b, csad, and hsd17b3 were lower in female GI while cyp2k6, adra2c, and bckdk were higher in the female GI. Immune and lipid-related gene network expression differed between the sexes (i.e., cholesterol export and metabolism) as well as networks related to gastric motility, gastrointestinal system absorption and digestion. Such data provide clues as to putative differences in gastrointestinal physiology between male and female zebrafish. This study identifies host-transcriptome differences that can be considered when interpreting the microgenderome of zebrafish in studies investigating GI physiology and toxicology of fishes.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Apoptosis Regulatory Proteins , Bacteria , Female , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract/microbiology , Male , Zebrafish/genetics
4.
Environ Pollut ; 268(Pt B): 115715, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33069042

ABSTRACT

Dietary exposure to chemicals alters the diversity of microbiome communities and can lead to pathophysiological changes in the gastrointestinal system. The organochlorine pesticide dieldrin is a persistent environmental contaminant that bioaccumulates in fatty tissue of aquatic organisms. The objectives of this study were to determine whether environmentally-relevant doses of dieldrin altered gastrointestinal morphology and the microbiome of zebrafish. Adult zebrafish at ∼4 months of age were fed a measured amount of feed containing either a solvent control or one of two doses of dieldrin (measured at 16, and 163.5 ng/g dry weight) for 4 months. Dieldrin body burden levels in zebrafish after four-month exposure were 0 (control), 11.47 ± 1.13 ng/g (low dose) and 18.32 ± 1.32 ng/g (high dose) wet weight [mean ± std]. Extensive histopathology at the whole organism level revealed that dieldrin exposure did not induce notable tissue pathology, including the gastrointestinal tract. A repeated measure mixed model analysis revealed that, while fish gained weight over time, there were no dieldrin-specific effects on body weight. Fecal content was collected from the gastrointestinal tract of males and 16S rRNA gene sequencing conducted. Dieldrin at a measured feed dose of 16 ng/g reduced the abundance of Firmicutes, a phylum involved in energy resorption. At the level of class, there was a decrease in abundance of Clostridia and Betaproteobacteria, and an increase in Verrucomicrobiae species. We used a computational approach called predicted relative metabolomic turnover (PRMT) to predict how a shift in microbial community composition affects exchange of metabolites. Dieldrin was predicted to affect metabolic turnover of uroporphyrinogen I and coproporphyrinogen I [enzyme]-cysteine, hydrogen selenide, selenite, and methyl-selenic acid in the fish gastrointestinal system. These pathways are related to bacterial heme biosynthesis and selenium metabolism. Our study demonstrates that dietary exposures to dieldrin can alter microbiota composition over 4 months, however the long-term consequences of such impacts are not well understood.


Subject(s)
Microbiota , Selenium , Animals , Dieldrin/toxicity , Gastrointestinal Tract , Heme , Male , RNA, Ribosomal, 16S , Zebrafish
5.
Environ Sci Technol ; 54(9): 5719-5728, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32255618

ABSTRACT

To improve physical characteristics of plastics such as flexibility and durability, producers enrich materials with phthalates such as di-2-(ethylhexyl) phthalate (DEHP). DEHP is a high production volume chemical associated with metabolic and immune disruption in animals and humans. To reveal mechanisms implicated in phthalate-related disruption in the gastrointestinal system, male and female zebrafish were fed DEHP (3 ppm) daily for two months. At the transcriptome level, DEHP significantly upregulated gene networks in the intestine associated with helper T cells' (Th1, Th2, and Th17) specific pathways. The activation of gene networks associated with adaptive immunity was linked to the suppression of networks for tight junction, gap junctional intercellular communication, and transmembrane transporters, all of which are precursors for impaired gut integrity and performance. On a class level, DEHP exposure increased Bacteroidia and Gammaproteobacteria and decreased Verrucomicrobiae in both the male and female gastrointestinal system. Further, in males there was a relative increase in Fusobacteriia and Betaproteobacteria and a relative decrease in Saccharibacteria. Predictive algorithms revealed that the functional shift in the microbiome community, and the metabolites they produce, act to modulate intestinal adaptive immunity. This finding suggests that the gut microbiota may contribute to the adverse effects of DEHP on the host by altering metabolites sensed by both intestinal and immune Th cells. Our results suggest that the microbiome-gut-immune axis can be modified by DEHP and emphasize the value of multiomics approaches to study microbiome-host interactions following chemical perturbations.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Adaptive Immunity , Animals , Female , Humans , Male , Zebrafish
6.
Biomed Res Int ; 2019: 7084734, 2019.
Article in English | MEDLINE | ID: mdl-30941370

ABSTRACT

Butyrate produced by the intestinal microbiota is essential for proper functioning of the intestinal immune system. Total dependence on parenteral nutrition (PN) is associated with numerous adverse effects, including severe microbial dysbiosis and loss of important butyrate producers. We hypothesised that a lack of butyrate produced by the gut microbiota may be compensated by its supplementation in PN mixtures. We tested whether i.v. butyrate administration would (a) positively modulate intestinal defence mechanisms and (b) counteract PN-induced dysbiosis. Male Wistar rats were randomised to chow, PN, and PN supplemented with 9 mM butyrate (PN+But) for 12 days. Antimicrobial peptides, mucins, tight junction proteins, and cytokine expression were assessed by RT-qPCR. T-cell subpopulations in mesenteric lymph nodes (MLN) were analysed by flow cytometry. Microbiota composition was assessed in caecum content. Butyrate supplementation resulted in increased expression of tight junction proteins (ZO-1, claudin-7, E-cadherin), antimicrobial peptides (Defa 8, Rd5, RegIIIγ), and lysozyme in the ileal mucosa. Butyrate partially alleviated PN-induced intestinal barrier impairment and normalised IL-4, IL-10, and IgA mRNA expression. PN administration was associated with an increase in Tregs in MLN, which was normalised by butyrate. Butyrate increased the total number of CD4+ and decreased a relative amount of CD8+ memory T cells in MLN. Lack of enteral nutrition and PN administration led to a shift in caecal microbiota composition. Butyrate did not reverse the altered expression of most taxa but did influence the abundance of some potentially beneficial/pathogenic genera, which might contribute to its overall beneficial effect.


Subject(s)
Butyrates/pharmacology , Dietary Supplements , Gastrointestinal Microbiome , Intestines/pathology , Parenteral Nutrition , Animals , Biodiversity , Colon/drug effects , Colon/pathology , Gastrointestinal Microbiome/drug effects , Gene Expression Regulation/drug effects , Ileum/drug effects , Ileum/pathology , Intestine, Small/drug effects , Lymph Nodes/drug effects , Lymph Nodes/metabolism , Lymphocytes/drug effects , Lymphocytes/metabolism , Male , Models, Animal , Mucins/biosynthesis , Paneth Cells/drug effects , Paneth Cells/metabolism , Peptides/genetics , Peptides/metabolism , Permeability , Phenotype , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Tight Junction Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...