Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters











Publication year range
2.
Genome Biol Evol ; 16(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39007295

ABSTRACT

This study delves into the genomic features of 10 Vibrio strains collected from deep-sea hydrothermal vents in the Pacific Ocean, providing insights into their evolutionary history and ecological adaptations. Through sequencing and pan-genome analysis involving 141 Vibrio species, we found that deep-sea strains exhibit larger genomes with unique gene distributions, suggesting adaptation to the vent environment. The phylogenomic reconstruction of the investigated isolates revealed the presence of 2 main clades: The first is monophyletic, consisting exclusively of Vibrio alginolyticus, while the second forms a monophyletic clade comprising both Vibrio antiquarius and Vibrio diabolicus species, which were previously isolated from deep-sea vents. All strains carry virulence and antibiotic resistance genes related to those found in human pathogenic Vibrio species which may play a wider ecological role other than host infection in these environments. In addition, functional genomic analysis identified genes potentially related to deep-sea survival and stress response, alongside candidate genes encoding for novel antimicrobial agents. Ultimately, the pan-genome we generated represents a valuable resource for future studies investigating the taxonomy, evolution, and ecology of Vibrio species.


Subject(s)
Genome, Bacterial , Hydrothermal Vents , Phylogeny , Vibrio , Vibrio/genetics , Hydrothermal Vents/microbiology , Evolution, Molecular , Adaptation, Physiological/genetics , Pacific Ocean
3.
Front Microbiol ; 14: 1134114, 2023.
Article in English | MEDLINE | ID: mdl-37637107

ABSTRACT

Shallow-water hydrothermal vents are unique marine environments ubiquitous along the coast of volcanically active regions of the planet. In contrast to their deep-sea counterparts, primary production at shallow-water vents relies on both photoautotrophy and chemoautotrophy. Such processes are supported by a range of geochemical regimes driven by different geological settings. The Aeolian archipelago, located in the southern Tyrrhenian sea, is characterized by intense hydrothermal activity and harbors some of the best sampled shallow-water vents of the Mediterranean Sea. Despite this, the correlation between microbial diversity, geochemical regimes and geological settings of the different volcanic islands of the archipelago is largely unknown. Here, we report the microbial diversity associated with six distinct shallow-water hydrothermal vents of the Aeolian Islands using a combination of 16S rRNA amplicon sequencing along with physicochemical and geochemical measurements. Samples were collected from biofilms, fluids and sediments from shallow vents on the islands of Lipari, Panarea, Salina, and Vulcano. Two new shallow vent locations are described here for the first time. Our results show the presence of diverse microbial communities consistent in their composition with the local geochemical regimes. The shallow water vents of the Aeolian Islands harbor highly diverse microbial community and should be included in future conservation efforts.

4.
Microorganisms ; 11(6)2023 May 23.
Article in English | MEDLINE | ID: mdl-37374867

ABSTRACT

Varunaivibrio sulfuroxidans type strain TC8T is a mesophilic, facultatively anaerobic, facultatively chemolithoautotrophic alphaproteobacterium isolated from a sulfidic shallow-water marine gas vent located at Tor Caldara, Tyrrhenian Sea, Italy. V. sulfuroxidans belongs to the family Thalassospiraceae within the Alphaproteobacteria, with Magnetovibrio blakemorei as its closest relative. The genome of V. sulfuroxidans encodes the genes involved in sulfur, thiosulfate and sulfide oxidation, as well as nitrate and oxygen respiration. The genome encodes the genes involved in carbon fixation via the Calvin-Benson-Bassham cycle, in addition to genes involved in glycolysis and the TCA cycle, indicating a mixotrophic lifestyle. Genes involved in the detoxification of mercury and arsenate are also present. The genome also encodes a complete flagellar complex, one intact prophage and one CRISPR, as well as a putative DNA uptake mechanism mediated by the type IVc (aka Tad pilus) secretion system. Overall, the genome of Varunaivibrio sulfuroxidans highlights the organism's metabolic versatility, a characteristic that makes this strain well-adapted to the dynamic environmental conditions of sulfidic gas vents.

5.
Environ Microbiol ; 24(12): 6164-6183, 2022 12.
Article in English | MEDLINE | ID: mdl-36271901

ABSTRACT

Physiological and gene expression studies of deep-sea bacteria under pressure conditions similar to those experienced in their natural habitat are critical for understanding growth kinetics and metabolic adaptations to in situ conditions. The Campylobacterium (aka Epsilonproteobacterium) Nautilia sp. strain PV-1 was isolated from hydrothermal fluids released from an active deep-sea hydrothermal vent at 9° N on the East Pacific Rise. Strain PV-1 is a piezophilic, moderately thermophilic, chemolithoautotrophic anaerobe that conserves energy by coupling the oxidation of hydrogen to the reduction of nitrate or elemental sulfur. Using a high-pressure-high temperature continuous culture system, we established that strain PV-1 has the shortest generation time of all known piezophilic bacteria and we investigated its protein expression pattern in response to different hydrostatic pressure regimes. Proteogenomic analyses of strain PV-1 grown at 20 and 5 MPa showed that pressure adaptation is not restricted to stress response or homeoviscous adaptation but extends to enzymes involved in central metabolic pathways. Protein synthesis, motility, transport, and energy metabolism are all affected by pressure, although to different extents. In strain PV-1, low-pressure conditions induce the synthesis of phage-related proteins and an overexpression of enzymes involved in carbon fixation.


Subject(s)
Epsilonproteobacteria , Hydrothermal Vents , Hydrothermal Vents/microbiology , Seawater/microbiology , RNA, Ribosomal, 16S/genetics , Phylogeny , Sequence Analysis, DNA , Epsilonproteobacteria/genetics
6.
Methods Mol Biol ; 2498: 77-88, 2022.
Article in English | MEDLINE | ID: mdl-35727541

ABSTRACT

Comparative genomics is a research field that allows comparison between genomes of different life forms providing information on the organization of the compared genomes, both in terms of structure and encoded functions. Moreover, this approach provides a powerful tool to study and understand the evolutionary changes and adaptation among organisms. Comparative genomics can be used to compare phylogenetically close marine organisms showing different vital strategies and lifestyles and obtain information regarding specific adaptations and/or their evolutionary history. Here we report a basic comparative genomics protocol to extrapolate evolutionary information about a protein of interest conserved across diverse marine microbes. The outlined approach can be used in a number of different settings and might help to gain new insights into the evolution and adaptation of marine microorganisms.


Subject(s)
Evolution, Molecular , Genomics , Adaptation, Physiological , Aquatic Organisms/genetics , Genome , Phylogeny
7.
Methods Mol Biol ; 2498: 265-281, 2022.
Article in English | MEDLINE | ID: mdl-35727549

ABSTRACT

Heterologous expression is an easy and broadly applicable experimental approach widely used to investigate protein functions without the need to genetically manipulate the original host. The approach is used to obtain large quantities of the desired protein, which can be further analyzed from a biochemical, structural, and functional perspective. The expression system consists of three main components: (1) a foreign DNA sequence coding for the protein of interest; (2) a suitable expression vector; (3) a suitable host (bacterial, yeast, or mammalian cells) which does not encode or express the protein of interest. Here, we show how to apply an Escherichia coli-based expression system to overexpress protein encoding genes from marine microbes.


Subject(s)
Escherichia coli , Genes, Bacterial , Animals , Bacteria/genetics , Escherichia coli/genetics , Mammals/genetics , Recombinant Proteins/genetics
8.
Front Microbiol ; 13: 840205, 2022.
Article in English | MEDLINE | ID: mdl-35283854

ABSTRACT

Shallow water hydrothermal vents represent highly dynamic environments where strong geochemical gradients can shape microbial communities. Recently, these systems are being widely used for investigating the effects of ocean acidification on biota as vent emissions can release high CO2 concentrations causing local pH reduction. However, other gas species, as well as trace elements and metals, are often released in association with CO2 and can potentially act as confounding factors. In this study, we evaluated the composition, diversity and inferred functional profiles of microbial biofilms in Levante Bay (Vulcano Island, Italy, Mediterranean Sea), a well-studied shallow-water hydrothermal vent system. We analyzed 16S rRNA transcripts from biofilms exposed to different intensity of hydrothermal activity, following a redox and pH gradient across the bay. We found that elevated CO2 concentrations causing low pH can affect the response of bacterial groups and taxa by either increasing or decreasing their relative abundance. H2S proved to be a highly selective factor shaping the composition and affecting the diversity of the community by selecting for sulfide-dependent, chemolithoautotrophic bacteria. The analysis of the 16S rRNA transcripts, along with the inferred functional profile of the communities, revealed a strong influence of H2S in the southern portion of the study area, and temporal succession affected the inferred abundance of genes for key metabolic pathways. Our results revealed that the composition of the microbial assemblages vary at very small spatial scales, mirroring the highly variable geochemical signature of vent emissions and cautioning for the use of these environments as models to investigate the effects of ocean acidification on microbial diversity.

9.
Front Microbiol ; 12: 638300, 2021.
Article in English | MEDLINE | ID: mdl-33889140

ABSTRACT

Tor Caldara is a shallow-water gas vent located in the Mediterranean Sea, with active venting of CO2 and H2S. At Tor Caldara, filamentous microbial biofilms, mainly composed of Epsilon- and Gammaproteobacteria, grow on substrates exposed to the gas venting. In this study, we took a metaproteogenomic approach to identify the metabolic potential and in situ expression of central metabolic pathways at two stages of biofilm maturation. Our findings indicate that inorganic reduced sulfur species are the main electron donors and CO2 the main carbon source for the filamentous biofilms, which conserve energy by oxygen and nitrate respiration, fix dinitrogen gas and detoxify heavy metals. Three metagenome-assembled genomes (MAGs), representative of key members in the biofilm community, were also recovered. Metaproteomic data show that metabolically active chemoautotrophic sulfide-oxidizing members of the Epsilonproteobacteria dominated the young microbial biofilms, while Gammaproteobacteria become prevalent in the established community. The co-expression of different pathways for sulfide oxidation by these two classes of bacteria suggests exposure to different sulfide concentrations within the biofilms, as well as fine-tuned adaptations of the enzymatic complexes. Taken together, our findings demonstrate a shift in the taxonomic composition and associated metabolic activity of these biofilms in the course of the colonization process.

10.
J Lipid Res ; 62: 100046, 2021.
Article in English | MEDLINE | ID: mdl-33587919

ABSTRACT

Lecithin:retinol acyltransferase and retinol-binding protein enable vitamin A (VA) storage and transport, respectively, maintaining tissue homeostasis of retinoids (VA derivatives). The precarious VA status of the lecithin:retinol acyltransferase-deficient (Lrat-/-) retinol-binding protein-deficient (Rbp-/-) mice rapidly deteriorates upon dietary VA restriction, leading to signs of severe vitamin A deficiency (VAD). As retinoids impact gut morphology and functions, VAD is often linked to intestinal pathological conditions and microbial dysbiosis. Thus, we investigated the contribution of VA storage and transport to intestinal retinoid homeostasis and functionalities. We showed the occurrence of intestinal VAD in Lrat-/-Rbp-/- mice, demonstrating the critical role of both pathways in preserving gut retinoid homeostasis. Moreover, in the mutant colon, VAD resulted in a compromised intestinal barrier as manifested by reduced mucins and antimicrobial defense, leaky gut, increased inflammation and oxidative stress, and altered mucosal immunocytokine profiles. These perturbations were accompanied by fecal dysbiosis, revealing that the VA status (sufficient vs. deficient), rather than the amount of dietary VA per se, is likely a major initial discriminant of the intestinal microbiome. Our data also pointed to a specific fecal taxonomic profile and distinct microbial functionalities associated with VAD. Overall, our findings revealed the suitability of the Lrat-/-Rbp-/- mice as a model to study intestinal dysfunctions and dysbiosis promoted by changes in tissue retinoid homeostasis induced by the host VA status and/or intake.


Subject(s)
Vitamin A
11.
Front Microbiol ; 10: 1262, 2019.
Article in English | MEDLINE | ID: mdl-31244796

ABSTRACT

Phage-host interactions likely play a major role in the composition and functioning of many microbiomes, yet remain poorly understood. Here, we employed single cell genomics to investigate phage-host interactions in a diffuse-flow, low-temperature hydrothermal vent that may be reflective of a broadly distributed biosphere in the subseafloor. We identified putative prophages in 13 of 126 sequenced single amplified genomes (SAGs), with no evidence for lytic infections, which is in stark contrast to findings in the surface ocean. Most were distantly related to known prophages, while their hosts included bacterial phyla Campylobacterota, Bacteroidetes, Chlorobi, Proteobacteria, Lentisphaerae, Spirochaetes, and Thermotogae. Our results suggest the predominance of lysogeny over lytic interaction in diffuse-flow, deep-sea hydrothermal vents, despite the high activity of the dominant Campylobacteria that would favor lytic infections. We show that some of the identified lysogens have co-evolved with their host over geological time scales and that their genes are transcribed in the environment. Functional annotations of lysogeny-related genes suggest involvement in horizontal gene transfer enabling host's protection against toxic metals and antibacterial compounds.

12.
Front Microbiol ; 9: 2970, 2018.
Article in English | MEDLINE | ID: mdl-30574130

ABSTRACT

In this study, we integrated geochemical measurements, microbial diversity surveys and physiological characterization of laboratory strains to investigate substrate-attached filamentous microbial biofilms at Tor Caldara, a shallow-water gas vent in the Tyrrhenian Sea. At this site, the venting gases are mainly composed of CO2 and H2S and the temperature at the emissions is the same as that of the surrounding water. To investigate the composition of the total and active fraction of the Tor Caldara biofilm communities, we collected established and newly formed filaments and we sequenced the 16S rRNA genes (DNA) and the 16S rRNA transcripts (cDNA). Chemoautotrophic sulfur-oxidizing members of the Gammaproteobacteria (predominantly Thiotrichales) dominate the active fraction of the established microbial filaments, while Epsilonproteobacteria (predominantly Sulfurovum spp.) are more prevalent in the young filaments. This indicates a succession of the two communities, possibly in response to age, sulfide and oxygen concentrations. Growth experiments with representative laboratory strains in sulfide gradient medium revealed that Sulfurovum riftiae (Epsilonproteobacteria) grew closer to the sulfide source than Thiomicrospira sp. (Gammaproteobacteria, Thiotrichales). Overall, our findings show that sulfur-oxidizing Epsilonproteobacteria are the dominant pioneer colonizers of the Tor Caldara biofilm communities and that Gammaproteobacteria become prevalent once the community is established. This succession pattern appears to be driven - among other factors - by the adaptation of Epsilon- and Gammaproteobacteria to different sulfide concentrations.

13.
Environ Microbiol ; 20(6): 2301-2316, 2018 06.
Article in English | MEDLINE | ID: mdl-29799164

ABSTRACT

The reduction of elemental sulfur is an important energy-conserving pathway in prokaryotes inhabiting geothermal environments, where sulfur respiration contributes to sulfur biogeochemical cycling. Despite this, the pathways through which elemental sulfur is reduced to hydrogen sulfide remain unclear in most microorganisms. We integrated growth experiments using Thermovibrio ammonificans, a deep-sea vent thermophile that conserves energy from the oxidation of hydrogen and reduction of both nitrate and elemental sulfur, with comparative transcriptomic and proteomic approaches, coupled with scanning electron microscopy. Our results revealed that two members of the FAD-dependent pyridine nucleotide disulfide reductase family, similar to sulfide-quinone reductase and to NADH-dependent sulfur reductase (NSR), respectively, are over-expressed during sulfur respiration. Scanning electron micrographs and sulfur sequestration experiments indicated that direct access of T. ammonificans to sulfur particles strongly promoted growth. The sulfur metabolism of T. ammonificans appears to require abiotic transition from bulk elemental sulfur to polysulfide to nanoparticulate sulfur at an acidic pH, coupled to biological hydrogen oxidation. A coupled biotic-abiotic mechanism for sulfur respiration is put forward, mediated by an NSR-like protein as the terminal reductase.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Hydrothermal Vents/microbiology , Sulfur/metabolism , Chemoautotrophic Growth , Hydrogen/metabolism , Hydrogen Sulfide/metabolism , Nitrates/metabolism , Oxidation-Reduction , Proteomics , Sulfides
14.
Mar Environ Res ; 132: 1-13, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29037570

ABSTRACT

Hydrothermal vent systems are inhabited by dense benthic communities adapted to extreme conditions such as high temperature, hydrogen sulphide (H2S) and elevated fluxes of metals. In the present work, a wide range of trace elements (Ag, Al, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Se, V and Zn) were measured in tissues of three tube dwelling annelids, Alvinella pompejana, Alvinella caudata and Riftia pachyptila, which colonize distinct habitats of the East Pacific Rise (EPR) at 2500 m depth. Metals concentrations in alvinellids were often 2-4 orders of magnitude higher than those commonly found in marine organisms, while much lower values were observed in the vestimentiferan polychaete. Mobility of trace elements was further characterized in tissues of A. pompejana where metals appeared mostly in insoluble forms, i.e. associated with hydrated oxides and sulphides. Arsenic was mainly present in a weakly insoluble form and with concentrations in the branchial tentacles of alvinellids, approximately 5-15 fold higher than those measured in the thorax. Chemical speciation of this element in tissues of the three polychaete species revealed a major contribution of methylated arsenic compounds, like dimethylarsinate (DMA) and, to a lower extent, monomethylarsonate (MMA) and trimethylarsine oxide (TMAO). Although the biotransformation of inorganic arsenic might represent a detoxification mechanism in polychaetes from hydrothermal vents, the elevated levels of methylated forms of arsenic in branchial tissues also suggest an ecological role of this element as an antipredatory strategy for more vulnerable tissues toward generalist consumers.


Subject(s)
Adaptation, Physiological/physiology , Arsenic/metabolism , Hydrothermal Vents , Polychaeta/physiology , Trace Elements/metabolism , Water Pollutants, Chemical/metabolism , Animals , Environmental Monitoring , Polychaeta/metabolism
15.
Elife ; 62017 04 24.
Article in English | MEDLINE | ID: mdl-28436819

ABSTRACT

Anaerobic thermophiles inhabit relic environments that resemble the early Earth. However, the lineage of these modern organisms co-evolved with our planet. Hence, these organisms carry both ancestral and acquired genes and serve as models to reconstruct early metabolism. Based on comparative genomic and proteomic analyses, we identified two distinct groups of genes in Thermovibrio ammonificans: the first codes for enzymes that do not require oxygen and use substrates of geothermal origin; the second appears to be a more recent acquisition, and may reflect adaptations to cope with the rise of oxygen on Earth. We propose that the ancestor of the Aquificae was originally a hydrogen oxidizing, sulfur reducing bacterium that used a hybrid pathway for CO2 fixation. With the gradual rise of oxygen in the atmosphere, more efficient terminal electron acceptors became available and this lineage acquired genes that increased its metabolic flexibility while retaining ancestral metabolic traits.


Subject(s)
Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/metabolism , Biological Evolution , Evolution, Molecular , Genomics , Metabolic Networks and Pathways , Proteomics
16.
Front Microbiol ; 7: 941, 2016.
Article in English | MEDLINE | ID: mdl-27379070

ABSTRACT

Pockmarks are crater-like depression on the seafloor associated with hydrocarbon ascent through muddy sediments in continental shelves around the world. In this study, we examine the diversity and distribution of benthic microbial communities at shallow-water pockmarks adjacent to the Middle Adriatic Ridge. We integrate microbial diversity data with characterization of local hydrocarbons concentrations and sediment geochemistry. Our results suggest these pockmarks are enriched in sedimentary hydrocarbons, and host a microbial community dominated by Bacteria, even in deeper sediment layers. Pockmark sediments showed higher prokaryotic abundance and biomass than surrounding sediments, potentially due to the increased availability of organic matter and higher concentrations of hydrocarbons linked to pockmark activity. Prokaryotic diversity analyses showed that the microbial communities of these shallow-water pockmarks are unique, and comprised phylotypes associated with the cycling of sulfur and nitrate compounds, as well as numerous know hydrocarbon degraders. Altogether, this study suggests that shallow-water pockmark habitats enhance the diversity of the benthic prokaryotic biosphere by providing specialized environmental niches.

17.
Int J Syst Evol Microbiol ; 66(9): 3579-3584, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27298285

ABSTRACT

A mesophilic, facultatively anaerobic, facultatively chemolithoautotrophic bacterium, designated strain TC8T, was isolated from a sulfidic shallow-water marine gas vent located at Tor Caldara, in the Tyrrhenian Sea, Italy. Cells were Gram-stain-negative curved rods with one or more polar flagella. Cells were approximately 1-1.5 µm in length and 0.6 µm in width. Strain TC8T grew between 20 and 35 °C (optimum 30 °C), with between 5 and 45 g NaCl l-1 (optimum 15-20 g l-1) and between pH 4.5 and 8.5 (optimum pH 6.0-7.0). The generation time under optimal conditions was 8 h. Strain TC8T was a facultative chemolithoautotroph also capable of using organic substrates as electron donors and carbon sources. Chemolithoautotrophic growth occurred with sulfur and thiosulfate as the electron donors, CO2 as the carbon source, and nitrate, oxygen (5 %, v/v) and ferric iron as the electron acceptors. Chemoorganoheterotrophic growth occurred with tryptone, peptone, Casamino acids, pyruvate and glycerol as substrates, while chemolithoherotrophic growth occurred with d(+)-glucose, sucrose, yeast extract, acetate, lactate, citrate and l-glutamine. The G+C content of the genomic DNA was 59.9 mol%. Phylogenetic analysis of the 16S rRNA gene sequence of strain TC8T showed that this organism formed a lineage within the family Rhodospirillaceae, which branched separately from the two closest relatives, Magnetovibrio blakemoreiMV1T (91.25 % similarity) and Magnetospira thiophilaMMS-1T (90.13 %). Based on phylogenetic, physiological and chemotaxonomic characteristics, it is proposed that the organism represents a novel species of a new genus within the family Rhodospirillaceae,Varunaivibrio sulfuroxidans gen. nov., sp. nov. The type strain of Varunaivibrio sulfuroxidans is TC8T (=DSM 101688T=JCM 31027T).


Subject(s)
Alphaproteobacteria/classification , Hydrothermal Vents/microbiology , Phylogeny , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , Chemoautotrophic Growth , DNA, Bacterial/genetics , Italy , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
18.
Int J Syst Evol Microbiol ; 66(7): 2697-2701, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27116914

ABSTRACT

An anaerobic, nitrate-reducing, sulfur- and thiosulfate-oxidizing bacterium, designated strain 1812ET, was isolated from the vent polychaete Riftia pachyptila, which was collected from a deep-sea hydrothermal vent on the East Pacific Rise. Cells were Gram-stain-negative rods, measuring approximately 1.05±0.11 µm by 0.40±0.05 µm. Strain 1812ET grew at 25 - -45 °C (optimum 35 °C), with 1.5-4.0 % (w/v) NaCl (optimum 3.0 %) and at pH 5.0-8.0 (optimum pH 6.0). The generation time under optimal conditions was 3 h. Strain 1812ET was an anaerobic chemolithotroph that grew with either sulfur or thiosulfate as the energy source and carbon dioxide as the sole carbon source. Nitrate was used as a sole terminal electron acceptor. The predominant fatty acids were C16 : 1ω7c, C18 : 1ω7c and C16 : 0. The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The major respiratory quinone was menaquinone MK-6 and the G+C content of the genomic DNA was 47.4 mol%. Phylogenetic analysis of the 16S rRNA gene of strain 1812ET showed that the isolate belonged to the Epsilonproteobacteria, and its closest relatives were Sulfurovum lithotrophicum 42BKTT and Sulfurovum aggregans Monchim 33T (98.3 and 95.7 % sequence similarity, respectively). DNA-DNA relatedness between strain 1812ET and the type strain of S. lithotrophicum was 29.7 %, demonstrating that the two strains are not members of the same species. Based on the phylogenetic, molecular, chemotaxonomic and physiological evidence, strain 1812ET represents a novel species within the genus Sulfurovum, for which the name Sulfurovum riftiae sp. nov. is proposed. The type strain is 1812ET (=DSM 101780T=JCM 30810T).


Subject(s)
Epsilonproteobacteria/classification , Hydrothermal Vents/microbiology , Phylogeny , Polychaeta/microbiology , Seawater/microbiology , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Epsilonproteobacteria/genetics , Epsilonproteobacteria/isolation & purification , Fatty Acids/chemistry , Nitrates/metabolism , Oxidation-Reduction , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Thiosulfates/metabolism , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
19.
Int J Syst Evol Microbiol ; 65(Pt 4): 1144-1150, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25604337

ABSTRACT

A thermophilic, anaerobic, chemolithoautotrophic bacterium, strain TB-6(T), was isolated from a deep-sea hydrothermal vent located on the East Pacific Rise at 9° N. The cells were Gram-staining-negative and rod-shaped with one or more polar flagella. Cell size was approximately 1-1.5 µm in length and 0.5 µm in width. Strain TB-6(T) grew between 45 and 70 °C (optimum 55-60 °C), 0 and 35 g NaCl l(-1) (optimum 20-30 g l(-1)) and pH 4.5 and 7.5 (optimum pH 5.5-6.0). Generation time under optimal conditions was 2 h. Growth of strain TB-6(T) occurred with H2 as the energy source, CO2 as the carbon source and nitrate or sulfur as electron acceptors, with formation of ammonium or hydrogen sulfide, respectively. Acetate, (+)-d-glucose, Casamino acids, sucrose and yeast extract were not used as carbon and energy sources. Inhibition of growth occurred in the presence of lactate, peptone and tryptone under a H2/CO2 (80 : 20; 200 kPa) gas phase. Thiosulfate, sulfite, arsenate, selenate and oxygen were not used as electron acceptors. The G+C content of the genomic DNA was 36.8 mol%. Phylogenetic analysis of the 16S rRNA gene of strain TB-6(T) showed that this organism branched separately from the three most closely related genera, Caminibacter , Nautilia and Lebetimonas , within the family Nautiliaceae . Strain TB-6(T) contained several unique fatty acids in comparison with other members of the family Nautiliaceae . Based on experimental evidence, it is proposed that the organism represents a novel species and genus within the family Nautiliaceae , Cetia pacifica, gen. nov., sp. nov. The type strain is TB-6(T) ( = DSM 27783(T) = JCM 19563(T)).


Subject(s)
Epsilonproteobacteria/classification , Hydrothermal Vents/microbiology , Phylogeny , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Epsilonproteobacteria/genetics , Epsilonproteobacteria/isolation & purification , Fatty Acids/chemistry , Molecular Sequence Data , Nitrates/metabolism , Pacific Ocean , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
20.
ISME J ; 9(5): 1222-34, 2015 May.
Article in English | MEDLINE | ID: mdl-25397946

ABSTRACT

Chemosynthetic Epsilonproteobacteria from deep-sea hydrothermal vents colonize substrates exposed to steep thermal and redox gradients. In many bacteria, substrate attachment, biofilm formation, expression of virulence genes and host colonization are partly controlled via a cell density-dependent mechanism involving signal molecules, known as quorum sensing. Within the Epsilonproteobacteria, quorum sensing has been investigated only in human pathogens that use the luxS/autoinducer-2 (AI-2) mechanism to control the expression of some of these functions. In this study we showed that luxS is conserved in Epsilonproteobacteria and that pathogenic and mesophilic members of this class inherited this gene from a thermophilic ancestor. Furthermore, we provide evidence that the luxS gene is expressed--and a quorum-sensing signal is produced--during growth of Sulfurovum lithotrophicum and Caminibacter mediatlanticus, two Epsilonproteobacteria from deep-sea hydrothermal vents. Finally, we detected luxS transcripts in Epsilonproteobacteria-dominated biofilm communities collected from deep-sea hydrothermal vents. Taken together, our findings indicate that the epsiloproteobacterial lineage of the LuxS enzyme originated in high-temperature geothermal environments and that, in vent Epsilonproteobacteria, luxS expression is linked to the production of AI-2 signals, which are likely produced in situ at deep-sea vents. We conclude that the luxS gene is part of the ancestral epsilonproteobacterial genome and represents an evolutionary link that connects thermophiles to human pathogens.


Subject(s)
Epsilonproteobacteria/genetics , Oxidation-Reduction , Quorum Sensing , Biofilms/growth & development , Biological Assay , Genome, Bacterial , Homoserine/analogs & derivatives , Humans , Hydrothermal Vents/microbiology , Lactones , Likelihood Functions , Phylogeny , Temperature , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL