Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Struct Dyn ; 11(2): 024308, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38586277

ABSTRACT

We present a new setup for resonant inelastic hard x-ray scattering at the Bernina beamline of SwissFEL with energy, momentum, and temporal resolution. The compact R = 0.5 m Johann-type spectrometer can be equipped with up to three crystal analyzers and allows efficient collection of RIXS spectra. Optical pumping for time-resolved studies can be realized with a broad span of optical wavelengths. We demonstrate the performance of the setup at an overall ∼180 meV resolution in a study of ground-state and photoexcited (at 400 nm) honeycomb 5d iridate α-Li2IrO3. Steady-state RIXS spectra at the iridium L3-edge (11.214 keV) have been collected and are in very good agreement with data collected at synchrotrons. The time-resolved RIXS transients exhibit changes in the energy loss region <2 eV, whose features mostly result from the hopping nature of 5d electrons in the honeycomb lattice. These changes are ascribed to modulations of the Ir-to-Ir inter-site transition scattering efficiency, which we associate to a transient screening of the on-site Coulomb interaction.

2.
Sensors (Basel) ; 21(4)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672262

ABSTRACT

Chromium compensated GaAs or GaAs:Cr sensors provided by the Tomsk State University (Russia) were characterized using the low noise, charge integrating readout chip JUNGFRAU with a pixel pitch of 75 × 75 µm2 regarding its application as an X-ray detector at synchrotrons sources or FELs. Sensor properties such as dark current, resistivity, noise performance, spectral resolution capability and charge transport properties were measured and compared with results from a previous batch of GaAs:Cr sensors which were produced from wafers obtained from a different supplier. The properties of the sample from the later batch of sensors from 2017 show a resistivity of 1.69 × 109 Ω/cm, which is 47% higher compared to the previous batch from 2016. Moreover, its noise performance is 14% lower with a value of (101.65 ± 0.04) e- ENC and the resolution of a monochromatic 60 keV photo peak is significantly improved by 38% to a FWHM of 4.3%. Likely, this is due to improvements in charge collection, lower noise, and more homogeneous effective pixel size. In a previous work, a hole lifetime of 1.4 ns for GaAs:Cr sensors was determined for the sensors of the 2016 sensor batch, explaining the so-called "crater effect" which describes the occurrence of negative signals in the pixels around a pixel with a photon hit due to the missing hole contribution to the overall signal causing an incomplete signal induction. In this publication, the "crater effect" is further elaborated by measuring GaAs:Cr sensors using the sensors from 2017. The hole lifetime of these sensors was 2.5 ns. A focused photon beam was used to illuminate well defined positions along the pixels in order to corroborate the findings from the previous work and to further characterize the consequences of the "crater effect" on the detector operation.

3.
J Synchrotron Radiat ; 26(Pt 4): 1226-1237, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31274448

ABSTRACT

Recent advances in segmented low-gain avalanche detectors (LGADs) make them promising for the position-sensitive detection of low-energy X-ray photons thanks to their internal gain. LGAD microstrip sensors fabricated by Fondazione Bruno Kessler have been investigated using X-rays with both charge-integrating and single-photon-counting readout chips developed at the Paul Scherrer Institut. In this work it is shown that the charge multiplication occurring in the sensor allows the detection of X-rays with improved signal-to-noise ratio in comparison with standard silicon sensors. The application in the tender X-ray energy range is demonstrated by the detection of the sulfur Kα and Kß lines (2.3 and 2.46 keV) in an energy-dispersive fluorescence spectrometer at the Swiss Light Source. Although further improvements in the segmentation and in the quantum efficiency at low energy are still necessary, this work paves the way for the development of single-photon-counting detectors in the soft X-ray energy range.

SELECTION OF CITATIONS
SEARCH DETAIL
...