Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Foods ; 13(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38890925

ABSTRACT

Glyphosate is a broad-spectrum pesticide that has become the most widely used herbicide globally. However, concerns have risen regarding its potential health impacts due to food contamination. Studies have detected glyphosate in human blood and urine samples, indicating human exposure and its persistence in the organism. A growing body of literature has reported the health risks concerning glyphosate exposure, suggesting that the daily intake of contaminated food and water poses a public health concern. Furthermore, countries with high glyphosate usage and lenient regulations regarding food and water contamination may face more severe consequences. In this context, in this review, we examined the literature regarding food contamination by glyphosate, discussed its detection methods, and highlighted its risks to human health.

2.
Environ Sci Pollut Res Int ; 29(8): 11685-11698, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34546525

ABSTRACT

The insecticide fipronil and the herbicide 2,4-D are the most applied pesticides in sugarcane crops leading to aquatic contamination. The whole-body bioconcentration of fipronil and 2,4-D, single and in mixture, was evaluated in Danio rerio after 96-h exposure. The activities of catalase (CAT) and glutathione S-transferase(GST) in whole body and in the gills and the acetylcholinesterase (AChE) in muscle were determined. The gill histopathology and the morphology of the pavement (PVC) and the mitochondria-rich(MRC) cells at gill surface were analyzed. Bioconcentration occurred after exposure to fipronil (2.69 L kg-1) and 2,4-D (1.73 L kg-1) single and in mixture of fipronil (3.10 L kg-1) and 2,4-D (1.27 L kg-1). Whole-body CAT activity was unchanged, and its activity decreased in the gills after exposure to fipronil and increased after exposure to 2,4-D and mixture. GST and AChE increased after single exposure to each pesticide and mixture of both. Fish exposed to mixture increased the MRC fractional area (MRCFA) which suggested possible ionic regulation disturbance and reduced the microridge of the PVC surface. Synergistic interactions occurred in the CAT activity and MRCFA after exposure to mixture of pesticides. The results indicate that the recommended application dose of fipronil and 2,4-D, single or in mixture, for sugarcane crops affects this fish species altering its homeostasis.


Subject(s)
Water Pollutants, Chemical , Zebrafish , 2,4-Dichlorophenoxyacetic Acid/toxicity , Acetylcholinesterase , Animals , Bioaccumulation , Catalase/metabolism , Glutathione Transferase/metabolism , Pyrazoles , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
3.
Aquat Toxicol ; 240: 105987, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34644674

ABSTRACT

The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and the insecticide fipronil have been used widely in agriculture and detected in aquatic ecosystems, where they threaten wildlife. This study evaluated the whole-body bioconcentration and the biochemical and morphological changes in the gills of the neotropical fish Prochilodus lineatus exposed for 96 h to 2,4-D or fipronil as single compounds or as a mixture (2,4-D + fipronil). Fish exposed to either compound alone bioconcentrated 2,4-D (77 ± 23 ng g - 1 fish dry mass) and fipronil (789 ± 178 ng g - 1 fish dry mass). Fish exposed to 2,4-D + fipronil bioconcentrated fipronil (683 ± 73 ng g - 1 fish dry mass) but not 2,4-D. In the gills, catalase (CAT) and glutathione-S-transferase (GST) activities and the lipid peroxidation (LPO) level increased after exposure to 2,4-D. GST activity increased after exposure to fipronil. Conversely, no changes occurred in CAT and GST activities and LPO upon exposure to 2,4-D + fipronil. Histopathological changes such as hyperplasia, cellular hypertrophy, epithelial lifting, and vascular congestion were frequent in the gills of fish exposed to 2,4-D or fipronil individually or 2,4-D + fipronil. The mitochondria-rich cell (MRC) density increased on gill surface in fish exposed to fipronil or 2,4-D + fipronil. Only exposure to 2,4-D alone induced oxidative stress in the gills. Most morphological changes showed defense responses against the pesticides; however, hypertrophy and the change in MRC indicated compensatory responses to maintain the gill osmoregulatory function. The 2,4-D + fipronil mixture showed antagonistic interaction, except for the MRC fractional area at gill surface, which showed synergistic interaction. This is the first report showing antagonistic interaction of 2,4-D and fipronil in the gills after exposing fish to the mixture of both pesticides. The biochemical and morphological changes in gills endanger the gill functions, a phenomenon that implies an energy cost for fish.


Subject(s)
Characiformes , Herbicides , Water Pollutants, Chemical , 2,4-Dichlorophenoxyacetic Acid/toxicity , Animals , Bioaccumulation , Catalase/metabolism , Characiformes/metabolism , Ecosystem , Gills/metabolism , Glutathione Transferase/metabolism , Herbicides/metabolism , Herbicides/toxicity , Lipid Peroxidation , Liver/metabolism , Oxidative Stress , Pyrazoles , Water Pollutants, Chemical/toxicity
4.
Chemosphere ; 263: 127972, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32822938

ABSTRACT

Brazil is the largest producer of sugarcane, a crop largely dependent on chemical control for its maintenance. The insecticide fipronil and herbicide 2,4-D stand out among the most commonly used pesticides and, therefore, environmental consequences are a matter of concern. The present study aimed to investigate the toxicity mechanisms of Regent® 800 WG (a.i. fipronil) and DMA® 806 BR (a.i. 2,4-D) pesticides using forced and non-forced exposures through an integrative approach: firstly, to assess whether contamination by fipronil and 2,4-D can trigger the avoidance behavior of the fish Danio rerio (zebrafish) and Hyphessobrycon eques (serpae tetra or mato-grosso). Additionally, the effects on fish were analyzed considering the swimming behavior together with a biomarker of neurotoxicity, the activity of acetylcholinesterase (AChE). In avoidance tests with pesticide gradients, D. rerio avoided the highest concentrations of the two compounds and H. eques avoided only the highest concentration of 2,4-D. The swimming behavior (distance moved) was reduced and AChE was inhibited when D. rerio was exposed to fipronil. The 2,4-D affected the swimming (maximum speed) of H. eques, but AChE was not altered. Avoidance response seemed not to have been affected by possible effects of contaminants on swimming behavior and Ache activity. This study showed the importance of knowing the avoidance capacity, swimming behavior and neurotoxic effects of pesticides on fish in an integrated and realistic context of exposure in environments contaminated with pesticides and can be useful as ecologically relevant tools for ecological risk assessment.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/toxicity , Behavior, Animal/drug effects , Pyrazoles/chemistry , Water Pollutants, Chemical/toxicity , Acetylcholinesterase/metabolism , Animals , Brazil , Herbicides/pharmacology , Insecticides/toxicity , Pesticides/toxicity , Swimming , Synaptic Transmission , Zebrafish/metabolism , Zebrafish/physiology
5.
Environ Monit Assess ; 192(1): 58, 2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31858272

ABSTRACT

The reduction of riparian vegetation around aquatic environments causes several physicochemical alterations and favors the entry of pesticides via surface runoff. Such changes have negative effects on aquatic organisms. In this study, we evaluated histopathological alterations in gills of Astyanax bifasciatus to test the hypothesis that more severe histopathological alterations occur in gills of fish from streams with higher agricultural impact from the surrounding area. The specimens were collected by electrofishing in seven streams of the lower Iguaçu basin between August 2015 and February 2016. The gills were processed according to routine histological methods and examined by light microscopy. The histopathological alterations, mainly stage II (lamellar aneurysm and total fusion of lamellae), were observed in fish collected in streams with higher agricultural activity. In these streams, the histopathological index indicated slight to moderate organ lesions. In contrast, in streams with more vegetation cover, fish collected presented stage I histopathological alterations (lamellar edema and lamellar hyperplasia), and the HI indicated normal functioning of the gills. In addition, chloride and acid mucous cells were more abundant in the gills of fish collected in rural streams. Our findings demonstrate that more severe histopathological alterations were registered in fish collected from streams with intense agricultural activity in the surrounding area. Therefore, it highlights that vegetation cover around the streams is a positive force for the conservation and health of aquatic organisms.


Subject(s)
Environmental Monitoring/methods , Fishes/growth & development , Forests , Gills/drug effects , Pesticides/toxicity , Rivers/chemistry , Water Pollutants, Chemical/toxicity , Agriculture , Animals , Brazil , Gills/pathology , Pesticides/analysis , Seafood , Seasons , Tropical Climate , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL