Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(22)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38005723

ABSTRACT

Water deficit significantly affects global crop growth and productivity, particularly in water-limited environments, such as upland rice cultivation, reducing grain yield. Plants activate various defense mechanisms during water deficit, involving numerous genes and complex metabolic pathways. Exploring homologous genes that are linked to enhanced drought tolerance through the use of genomic data from model organisms can aid in the functional validation of target species. We evaluated the upland rice OsCPK5 gene, an A. thaliana AtCPK6 homolog, by overexpressing it in the BRSMG Curinga cultivar. Transformants were assessed using a semi-automated phenotyping platform under two irrigation conditions: regular watering, and water deficit applied 79 days after seeding, lasting 14 days, followed by irrigation at 80% field capacity. The physiological data and leaf samples were collected at reproductive stages R3, R6, and R8. The genetically modified (GM) plants consistently exhibited higher OsCPK5 gene expression levels across stages, peaking during grain filling, and displayed reduced stomatal conductance and photosynthetic rate and increased water-use efficiency compared to non-GM (NGM) plants under drought. The GM plants also exhibited a higher filled grain percentage under both irrigation conditions. Their drought susceptibility index was 0.9 times lower than that of NGM plants, and they maintained a higher chlorophyll a/b index, indicating sustained photosynthesis. The NGM plants under water deficit exhibited more leaf senescence, while the OsCPK5-overexpressing plants retained their green leaves. Overall, OsCPK5 overexpression induced diverse drought tolerance mechanisms, indicating the potential for future development of more drought-tolerant rice cultivars.

2.
Sci Rep ; 13(1): 12721, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37543642

ABSTRACT

The expansion of bean genome technologies has prompted new perspectives on generating resources and knowledge essential to research and implementing biotechnological tools for the practical operations of plant breeding programs. This study aimed to resequence the entire genome (whole genome sequencing-WGS) of 40 bean genotypes selected based on their significance in breeding programs worldwide, with the objective of generating an extensive database for the identification of single nucleotide polymorphisms (SNPs). Over 6 million SNPs were identified, distributed across the 11 bean chromosomes. After quality variant filtering, 420,509 high-quality SNPs were established, with an average of 38,228 SNPs per chromosome. These variants were categorized based on their predicted effects, revealing that the majority exerted a modifier impact on non-coding genome regions (94.68%). Notably, a significant proportion of SNPs occurred in intergenic regions (62.89%) and at least one SNP was identified in 58.63% of the genes annotated in the bean genome. Of particular interest, 7841 SNPs were identified in 85% of the putative plant disease defense-related genes, presenting a valuable resource for crop breeding efforts. These findings provide a foundation for the development of innovative and broadly applicable technologies for the routine selection of superior genotypes in global bean improvement and germplasm characterization programs.


Subject(s)
Phaseolus , Phaseolus/genetics , Genome, Plant/genetics , Plant Breeding , Sequence Analysis, DNA , Genotype , Polymorphism, Single Nucleotide
3.
Front Plant Sci ; 13: 1033687, 2022.
Article in English | MEDLINE | ID: mdl-36507385

ABSTRACT

The rajado seeded Andean bean (Phaseolus vulgaris L.) cultivar BRSMG Realce (striped seed coat) developed by Embrapa expressed a high level of anthracnose resistance, caused by Colletotrichum lindemuthianum, in field and greenhouse screenings. The main goal of this study was to evaluate the inheritance of anthracnose resistance in BRSMG Realce, map the resistance locus or major gene cluster previously named as Co-Realce, identify resistance-related positional genes, and analyze potential markers linked to the resistance allele. F2 plants derived from the cross BRSMG Realce × BRS FC104 (Mesoamerican) and from the cross BRSMG Realce × BRS Notável (Mesoamerican) were inoculated with the C. lindemuthianum races 475 and 81, respectively. The BRSMG Realce × BRS FC104 F2 population was also genotyped using the DArTseq technology. Crosses between BRSMG Realce and BAT 93 (Mesoamerican) were also conducted and resulting F2 plants were inoculated with the C. lindemuthianum races 65 and 1609, individually. The results shown that anthracnose resistance in BRSMG Realce is controlled by a single locus with complete dominance. A genetic map including 1,118 SNP markers was built and shown 78% of the markers mapped at a distances less than 5.0 cM, with a total genetic length of 4,473.4 cM. A major locus (Co-Realce) explaining 54.6% of the phenotypic variation of symptoms caused by the race 475 was identified in Pv04, flanked by the markers snp1327 and snp12782 and 4.48 cM apart each other. These SNPs are useful for marker-assisted selection, due to an estimated selection efficiency of 99.2%. The identified resistance allele segregates independently of the resistance allele Co-33 (Pv04) present in BAT 93. The mapped genomic region with 704,867 bp comprising 63 putative genes, 44 of which were related to the pathogen-host interaction. Based on all these results and evidence, anthracnose resistance in BRSMG Realce should be considered as monogenic, useful for breeding purpose. It is proposed that locus Co-Realce is unique and be provisionally designated as CoPv04R until be officially nominated in accordance with the rules established by the Bean Improvement Cooperative Genetics Committee.

4.
Gene ; 823: 146377, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35231571

ABSTRACT

Cowpea [Vigna unguiculata (L.) Walp.] is one of the most tolerant legume crops to drought and salt stresses. WRKY transcription factor (TF) family members stand out among plant transcriptional regulators related to abiotic stress tolerance. However, little information is currently available on the expression of the cowpea WRKY gene family (VuWRKY) in response to water deficit. Thus, we analyzed genomic and transcriptomic data from cowpea to identify VuWRKY members and characterize their structure and transcriptional response under root dehydration stress. Ninety-two complete VuWRKY genes were found in the cowpea genome based on their domain characteristics. They were clustered into three groups: I (15 members), II (58), and III (16), while three genes were unclassified. Domain analysis of the encoded proteins identified four major variants of the conserved heptapeptide motif WRKYGQK. In silico analysis of VuWRKY gene promoters identified eight candidate binding motifs of cis-regulatory elements, regulated mainly by six TF families associated with abiotic stress responses. Ninety-seven VuWRKY modulated splicing variants associated with 55 VuWRKY genes were identified via RNA-Seq analysis available at the Cowpea Genomics Consortium (CpGC) database. qPCR analyses showed that 22 genes are induced under root dehydration, with VuWRKY18, 21, and 75 exhibiting the most significant induction levels. Given their central role in activating signal transduction cascades in abiotic stress response, the data provide a foundation for the targeted modification of specific VuWRKY family members to improve drought tolerance in this important climate-resilient legume in the developing world and beyond.


Subject(s)
Gene Expression Profiling/methods , Genomics/methods , Transcription Factors/chemistry , Transcription Factors/genetics , Vigna/genetics , Alternative Splicing , Amino Acid Motifs , Chromosome Mapping , Droughts , Gene Expression Regulation, Plant , Multigene Family , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Roots/genetics , Promoter Regions, Genetic , Protein Domains , RNA-Seq , Stress, Physiological
5.
Front Plant Sci ; 11: 574674, 2020.
Article in English | MEDLINE | ID: mdl-33343591

ABSTRACT

Drought stress is an important abiotic factor limiting common bean yield, with great impact on the production worldwide. Understanding the genetic basis regulating beans' yield and seed weight (SW) is a fundamental prerequisite for the development of superior cultivars. The main objectives of this work were to conduct genome-wide marker discovery by genotyping a Mesoamerican panel of common bean germplasm, containing cultivated and landrace accessions of broad origin, followed by the identification of genomic regions associated with productivity under two water regimes using different genome-wide association study (GWAS) approaches. A total of 11,870 markers were genotyped for the 339 genotypes, of which 3,213 were SilicoDArT and 8,657 SNPs derived from DArT and CaptureSeq. The estimated linkage disequilibrium extension, corrected for structure and relatedness (r 2 sv ), was 98.63 and 124.18 kb for landraces and breeding lines, respectively. Germplasm was structured into landraces and lines/cultivars. We carried out GWASs for 100-SW and yield in field environments with and without water stress for 3 consecutive years, using single-, segment-, and gene-based models. Higher number of associations at high stringency was identified for the SW trait under irrigation, totaling ∼185 QTLs for both single- and segment-based, whereas gene-based GWASs showed ∼220 genomic regions containing ∼650 genes. For SW under drought, 18 QTLs were identified for single- and segment-based and 35 genes by gene-based GWASs. For yield, under irrigation, 25 associations were identified, whereas under drought the total was 10 using both approaches. In addition to the consistent associations detected across experiments, these GWAS approaches provided important complementary QTL information (∼221 QTLs; 650 genes; r 2 from 0.01% to 32%). Several QTLs were mined within or near candidate genes playing significant role in productivity, providing better understanding of the genetic mechanisms underlying these traits and making available molecular tools to be used in marker-assisted breeding. The findings also allowed the identification of genetic material (germplasm) with better yield performance under drought, promising to a common bean breeding program. Finally, the availability of this highly diverse Mesoamerican panel is of great scientific value for the analysis of any relevant traits in common bean.

6.
Neuropsychiatr Dis Treat ; 16: 427-432, 2020.
Article in English | MEDLINE | ID: mdl-32103962

ABSTRACT

INTRODUCTION: Clozapine (CLZ) is the gold standard drug for treatment-refractory schizophrenia (TRS). However, approximately 30% of patients partially respond to CLZ, defining this subset with super refractory schizophrenia (SRS). Alterations in enzyme activity may affect CLZ responses; the CYP3A4, CYP1A2 and CYP2C19 genes are primarily responsible for CLZ metabolism. OBJECTIVE: The aim of this study was to assess if CYP2C19 variants were associated with TRS or SRS. METHODS: CYP2C19*2 loss-of-function and CYP2C19*17 gain-of-function polymorphism genotype testing were performed in 108 individuals undergoing pharmacological treatment for TRS or SRS. DNA was extracted and polymorphisms were analyzed by polymerase chain reaction (PCR) and sequencing. RESULTS: CYP2C19*17 had positive correlations with SRS and lower Brief Psychiatric Rating Scale (BPRS) scores for TRS. In addition, CYP2C19*2 was associated with lower CLZ dosages for TRS. CONCLUSION: These results show that CYP2C19*2 and CYP2C19*17 polymorphisms influence CLZ responses during schizophrenia treatment.

7.
Genet Mol Biol ; 43(1): e20180259, 2020.
Article in English | MEDLINE | ID: mdl-31429863

ABSTRACT

Genes related to the response to drought stress in leaf and root tissue of drought-susceptible (DS) and tolerant (DT) genotypes were characterized by RNA-Seq. In total, 54,750 transcripts, representative of 28,590 genes, were identified; of these, 1,648 were of high-fidelity (merge of 12 libraries) and described for the first time in the Andean germplasm. From the 1,239 differentially expressed genes (DEGs), 458 were identified in DT, with a predominance of genes in categories of oxidative stress, response to stimulus and kinase activity. Most genes related to oxidation-reduction terms in roots were early triggered in DT (T75) compared to DS (T150) suggestive of a mechanism of tolerance by reducing the damage from ROS. Among the KEGG enriched by DEGs up-regulated in DT leaves, two related to the formation of Sulfur-containing compounds, which are known for their involvement in tolerance to abiotic stresses, were common to all treatments. Through qPCR, 88.64% of the DEGs were validated. A total of 151,283 variants were identified and functional effects estimated for 85,780. The raw data files were submitted to the NCBI database. A transcriptome map revealed new genes and isoforms under drought. These results supports a better understanding of the drought tolerance mechanisms in beans.

8.
Environ Sci Pollut Res Int ; 25(31): 31149-31164, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30187414

ABSTRACT

In the Brazilian wet and dry seasons, common beans (Phaseolus vulgaris L.) are grown under rainfed conditions with unexpected episodes of drought and high temperatures. The objective of this study was to evaluate the physiological mechanisms associated with drought adaptation traits in landraces and line/cultivars of beans from the Andean and Mesoamerican gene pools. Twenty-five genotypes, contrasting in terms of drought tolerance, were evaluated in a phenotyping platform under irrigated and rainfed conditions. Agronomic and physiological parameters such as grain yield, shoot structures, gas exchange, water potential, and osmotic adjustment were evaluated. The stress intensity was estimated to be 0.57, and the grain yield reduction ranged from 22 to 89%. Seven accessions, representative of the Andean and Mesoamerican germplasm (CF 200012, CF 240056, CF 250002, CF 900004, CNF 4497, CNF 7382, and SEA 5), presented superior performance in grain yield with and without stresses. The physiological responses under abiotic stresses were highly variable among the genotypes, and two Mesoamerican accessions (CF 200012 and SEA 5) showed more favorable adaptive responses. As the main secondary physiological traits, gas exchange and osmotic adjustment should be evaluated together with the grain yield to increase the selection efficiency of abiotic stresses-tolerant common bean lines.


Subject(s)
Adaptation, Physiological , Droughts , Phaseolus/physiology , Stress, Physiological , Brazil , Edible Grain/physiology , Genotype , Phenotype , Plant Breeding
9.
G3 (Bethesda) ; 8(8): 2841-2854, 2018 07 31.
Article in English | MEDLINE | ID: mdl-29967054

ABSTRACT

The availability of high-density molecular markers in common bean has allowed to explore the genetic basis of important complex agronomic traits with increased resolution. Genome-Wide Association Studies (GWAS) and Regional Heritability Mapping (RHM) are two analytical approaches for the detection of genetic variants. We carried out GWAS and RHM for plant architecture, lodging and productivity across two important growing environments in Brazil in a germplasm of 188 common bean varieties using DArTseq genotyping strategies. The coefficient of determination of G × E interaction (c2int ) was equal to 17, 21 and 41%, respectively for the traits architecture, lodging, and productivity. Trait heritabilities were estimated at 0.81 (architecture), 0.79 (lodging) and 0.43 (productivity), and total genomic heritability accounted for large proportions (72% to ≈100%) of trait heritability. At the same probability threshold, three marker-trait associations were detected using GWAS, while RHM detected eight QTL encompassing 145 markers along five chromosomes. The proportion of genomic heritability explained by RHM was considerably higher (35.48 to 58.02) than that explained by GWAS (28.39 to 30.37). In general, RHM accounted for larger fractions of the additive genetic variance being captured by markers effects inside the defined regions. Nevertheless, a considerable proportion of the heritability is still missing (∼42% to ∼64%), probably due to LD between markers and genes and/or rare allele variants not sampled. RHM in autogamous species had the potential to identify larger-effect QTL combining allelic variants that could be effectively incorporated into whole-genome prediction models and tracked through breeding generations using marker-assisted selection.


Subject(s)
Chromosome Mapping , Genome-Wide Association Study , Inheritance Patterns , Phaseolus/genetics , Quantitative Trait, Heritable , Algorithms , Alleles , Gene Expression Regulation, Plant , Genetic Markers , Genomics , Genotype , Linkage Disequilibrium , Models, Genetic , Phaseolus/classification , Phenotype , Quantitative Trait Loci
10.
Protoplasma ; 255(6): 1751-1761, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29846801

ABSTRACT

This work aimed to evaluate the drought tolerance of transformed plants of the cultivar BRSMG Curinga that overexpress the rice phospholipase D α1 (OsPLDα1) gene. The productivity of independent transformation event plants of the OsPLDα1 gene was evaluated in an experiment where 19 days of water deficit were applied at the reproductive stage, a very strict growing condition for upland rice. The non-genetically modified cultivar (NGM) under drought treatment reduced productivity by 89% compared with that under irrigated treatment, whereas transformed plants (PLDα1_E2) reduced productivity by only 41%. After the drought treatment, the PLDα1_E2 plants productivity was five times greater than that of the NGM plant. Moreover, no adverse effects on growth and development of the transgenic plants were observed. Seven days after the resumption of irrigation, PLDα1_E2 plants had higher stomatal conductance, greater photosynthetic rate, and transpiration rate than did NGM plants, as well as a higher expression level of the OsPLDα1 gene. A delay in the senescence process was observed in these PLDα1_E2 plants, and this was determined for the recovery of photosynthesis, with greater expression of the Rubisco and lower expression of the SOD. This finding was suggestive of decreased oxidative stress, probably due to gas exchange by the partial closure of the stomata of these transformed plants, which prevented the formation of reactive oxygen species. OsPLDα1 gene overexpression resulted in a reduction in production loss under severe water deficit and revealed a possibility for the development of upland rice cultivars that are more tolerant to extreme drought conditions.


Subject(s)
Adaptation, Physiological , Droughts , Oryza/enzymology , Oryza/physiology , Phospholipases/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Photosynthesis , Plant Stomata/physiology , Plant Transpiration/physiology , Plants, Genetically Modified , Superoxide Dismutase/metabolism
11.
Ciênc. rural (Online) ; 48(8): e20170497, 2018. tab, graf
Article in English | LILACS | ID: biblio-1045189

ABSTRACT

ABSTRACT: We aimed to apply genomic information based on SNP (single nucleotide polymorphism) markers for the genetic evaluation of the traits "stay-green" (SG), plant architecture (PA), grain aspect (GA) and grain yield (GY) in common bean through Bayesian models. These models were compared in terms of prediction accuracy and ability for heritability estimation for each one of the mentioned traits. A total of 80 cultivars were genotyped for 377 SNP markers, whose effects were estimated by five different Bayesian models: Bayes A (BA), B (BB), C (BC), LASSO (BL) e Ridge regression (BRR). Although, prediction accuracies calculated by means of cross-validation have been similar within each trait, the BB model stood out for the trait SG, whereas the BRR was indicated for the remaining traits. The heritability estimates for the traits SG, PA, GA and GY were 0.61, 0.28, 0.32 and 0.29, respectively. In summary, the Bayesian methods applied here were effective and ease to be implemented. The used SNP markers can help in the early selection of promising genotypes, since incorporating genomic information increase the prediction accuracy of the estimated genetic merit.


RESUMO: Objetivou-se incorporar informações genômicas de marcadores SNP ("single nucleotide polymorphism") na avaliação genética das características "stay-green" (SG), arquitetura de planta (AP), aspecto de grãos (AG) e produtividade de grãos (PG) em feijoeiro-comum via modelos Bayesianos. Estes modelos foram comparados quanto a acurácia de predição e habilidade de estimação da herdabilidade para cada característica. Utilizaram-se informações de 80 cultivares genotipadas para 377 marcadores SNP, cujos efeitos de substituição alélica foram estimados por meio de cinco diferentes modelos Bayesianos: Bayes A (BA), B (BB), C (BC), LASSO (BL) e regressão "ridge" (BRR). Embora as acurácias de predição calculadas por meio de análise de validação cruzada tenham sido similares dentro de cada característica, o modelo BB se destacou para a característica SG, enquanto o modelo BRR foi indicado para as demais. As herdabilidades estimadas para SG, AP, AG e PG foram, respectivamente, 0,61, 0,28, 0,32 e 0,29. Em resumo, os métodos contemplados mostraram-se efetivos e de fácil implementação. O conjunto de marcadores utilizado pode auxiliar na seleção precoce de genótipos promissores, uma vez que a incorporação de informações genômicas aumenta a acurácia de predição do mérito genético estimado.

12.
Genet. mol. biol ; 40(4): 813-823, Oct.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-892451

ABSTRACT

Abstract The common bean is characterized by high sensitivity to drought and low productivity. Breeding for drought resistance in this species involves genes of different genetic groups. In this work, we used a SEA 5 x AND 277 cross to map quantitative trait loci associated with drought tolerance in order to assess the factors that determine the magnitude of drought response in common beans. A total of 438 polymorphic markers were used to genotype the F8 mapping population. Phenotyping was done in two greenhouses, one used to simulate drought and the other to simulate irrigated conditions. Fourteen traits associated with drought tolerance were measured to identify the quantitative trait loci (QTLs). The map was constructed with 331 markers that covered all 11 chromosomes and had a total length of 1515 cM. Twenty-two QTLs were discovered for chlorophyll, leaf and stem fresh biomass, leaf biomass dry weight, leaf temperature, number of pods per plant, number of seeds per plant, seed weight, days to flowering, dry pod weight and total yield under well-watered and drought (stress) conditions. All the QTLs detected under drought conditions showed positive effects of the SEA 5 allele. This study provides a better understanding of the genetic inheritance of drought tolerance in common bean.

13.
Genet Mol Biol ; 40(4): 813-823, 2017.
Article in English | MEDLINE | ID: mdl-29064511

ABSTRACT

The common bean is characterized by high sensitivity to drought and low productivity. Breeding for drought resistance in this species involves genes of different genetic groups. In this work, we used a SEA 5 x AND 277 cross to map quantitative trait loci associated with drought tolerance in order to assess the factors that determine the magnitude of drought response in common beans. A total of 438 polymorphic markers were used to genotype the F8 mapping population. Phenotyping was done in two greenhouses, one used to simulate drought and the other to simulate irrigated conditions. Fourteen traits associated with drought tolerance were measured to identify the quantitative trait loci (QTLs). The map was constructed with 331 markers that covered all 11 chromosomes and had a total length of 1515 cM. Twenty-two QTLs were discovered for chlorophyll, leaf and stem fresh biomass, leaf biomass dry weight, leaf temperature, number of pods per plant, number of seeds per plant, seed weight, days to flowering, dry pod weight and total yield under well-watered and drought (stress) conditions. All the QTLs detected under drought conditions showed positive effects of the SEA 5 allele. This study provides a better understanding of the genetic inheritance of drought tolerance in common bean.

14.
Genet. mol. biol ; 40(1): 109-122, Jan.-Mar. 2017. tab, graf
Article in English | LILACS | ID: biblio-892371

ABSTRACT

Abstract Angular leaf spot (ALS) and powdery mildew (PWM) are two important fungi diseases causing significant yield losses in common beans. In this study, a new genetic linkage map was constructed using single sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), in a segregating population derived from the AND 277 x SEA 5 cross, with 105 recombinant inbred lines. Phenotypic evaluations were performed in the greenhouse to identify quantitative trait loci (QTLs) associated with resistance by means of the composite interval mapping analysis. Four QTLs were identified for ALS resistance. The QTL ALS11AS, linked on the SNP BAR 5054, mapped on chromosome Pv11, showed the greatest effect (R2 = 26.5%) on ALS phenotypic variance. For PWM resistance, two QTLs were detected, PWM2AS and PWM11AS, on Pv2 and Pv11, explaining 7% and 66% of the phenotypic variation, respectively. Both QTLs on Pv11 were mapped on the same genomic region, suggesting that it is a pleiotropic region. The present study resulted in the identification of new markers closely linked to ALS and PWM QTLs, which can be used for marker-assisted selection, fine mapping and positional cloning.

15.
Genet Mol Biol ; 40(1): 109-122, 2017.
Article in English | MEDLINE | ID: mdl-28222201

ABSTRACT

Angular leaf spot (ALS) and powdery mildew (PWM) are two important fungi diseases causing significant yield losses in common beans. In this study, a new genetic linkage map was constructed using single sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), in a segregating population derived from the AND 277 x SEA 5 cross, with 105 recombinant inbred lines. Phenotypic evaluations were performed in the greenhouse to identify quantitative trait loci (QTLs) associated with resistance by means of the composite interval mapping analysis. Four QTLs were identified for ALS resistance. The QTL ALS11AS, linked on the SNP BAR 5054, mapped on chromosome Pv11, showed the greatest effect (R2 = 26.5%) on ALS phenotypic variance. For PWM resistance, two QTLs were detected, PWM2AS and PWM11AS, on Pv2 and Pv11, explaining 7% and 66% of the phenotypic variation, respectively. Both QTLs on Pv11 were mapped on the same genomic region, suggesting that it is a pleiotropic region. The present study resulted in the identification of new markers closely linked to ALS and PWM QTLs, which can be used for marker-assisted selection, fine mapping and positional cloning.

16.
Genetica ; 144(6): 651-664, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27722804

ABSTRACT

The identification of rice drought tolerant materials is crucial for the development of best performing cultivars for the upland cultivation system. This study aimed to identify markers and candidate genes associated with drought tolerance by Genome Wide Association Study analysis, in order to develop tools for use in rice breeding programs. This analysis was made with 175 upland rice accessions (Oryza sativa), evaluated in experiments with and without water restriction, and 150,325 SNPs. Thirteen SNP markers associated with yield under drought conditions were identified. Through stepwise regression analysis, eight SNP markers were selected and validated in silico, and when tested by PCR, two out of the eight SNP markers were able to identify a group of rice genotypes with higher productivity under drought. These results are encouraging for deriving markers for the routine analysis of marker assisted selection. From the drought experiment, including the genes inherited in linkage blocks, 50 genes were identified, from which 30 were annotated, and 10 were previously related to drought and/or abiotic stress tolerance, such as the transcription factors WRKY and Apetala2, and protein kinases.


Subject(s)
Droughts , Genome-Wide Association Study , Oryza/growth & development , Oryza/genetics , Water/pharmacology , Adaptation, Physiological/genetics , Dose-Response Relationship, Drug , Genetic Markers/genetics , Genotype , Molecular Sequence Annotation , Oryza/metabolism , Oryza/physiology , Polymorphism, Single Nucleotide , Stress, Physiological/genetics
17.
PLoS One ; 11(3): e0150506, 2016.
Article in English | MEDLINE | ID: mdl-26930078

ABSTRACT

The common bean (Phaseolus vulgaris L.) is the world's most important legume for human consumption. Anthracnose (ANT; Colletotrichum lindemuthianum) and angular leaf spot (ALS; Pseudocercospora griseola) are complex diseases that cause major yield losses in common bean. Depending on the cultivar and environmental conditions, anthracnose and angular leaf spot infections can reduce crop yield drastically. This study aimed to estimate linkage disequilibrium levels and identify quantitative resistance loci (QRL) controlling resistance to both ANT and ALS diseases of 180 accessions of common bean using genome-wide association analysis. A randomized complete block design with four replicates was performed for the ANT and ALS experiments, with four plants per genotype in each replicate. Association mapping analyses were performed for ANT and ALS using a mixed linear model approach implemented in TASSEL. A total of 17 and 11 significant statistically associations involving SSRs were detected for ANT and ALS resistance loci, respectively. Using SNPs, 21 and 17 significant statistically associations were obtained for ANT and angular ALS, respectively, providing more associations with this marker. The SSR-IAC167 and PvM95 markers, both located on chromosome Pv03, and the SNP scaffold00021_89379, were associated with both diseases. The other markers were distributed across the entire common bean genome, with chromosomes Pv03 and Pv08 showing the greatest number of loci associated with ANT resistance. The chromosome Pv04 was the most saturated one, with six markers associated with ALS resistance. The telomeric region of this chromosome showed four markers located between approximately 2.5 Mb and 4.4 Mb. Our results demonstrate the great potential of genome-wide association studies to identify QRLs related to ANT and ALS in common bean. The results indicate a quantitative and complex inheritance pattern for both diseases in common bean. Our findings will contribute to more effective screening of elite germplasm to find resistance alleles for marker-assisted selection in breeding programs.


Subject(s)
Disease Resistance/genetics , Genome, Plant/genetics , Phaseolus/genetics , Plant Diseases/genetics , Ascomycota/physiology , Chromosome Mapping , Chromosomes, Plant/genetics , Colletotrichum/physiology , Gene Frequency , Genes, Plant/genetics , Genetic Markers/genetics , Genotype , Host-Pathogen Interactions , Inheritance Patterns/genetics , Linkage Disequilibrium , Microsatellite Repeats/genetics , Phaseolus/microbiology , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics
18.
Genetica ; 143(4): 413-23, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25944782

ABSTRACT

The level and distribution of the genetic variability in 18 natural populations of Oryza glumaepatula that were collected from two Brazilian states were estimated using a set of 23 highly informative SSR markers. Samples comprising 78 and 117 individuals from populations of the states of Tocantins and Roraima, respectively, were evaluated in order to integrate and support previous studies that were carried out with populations of O. glumaepatula from Brazil. A total of 189 alleles were identified with an average of 8.22 alleles per locus. The 11 populations from Roraima presented, in combination, a higher genetic diversity (HE = 0.245) compared with that of the seven populations from Tocantins (HE = 0.212). All of the populations showed high and significant inbreeding values (mean f = 0.59); however, the mean was higher in Tocantins populations, indicating a higher gene flow in Roraima populations. The overall coefficient of genetic differentiation (FST) among the populations was high and significant (0.59) and was higher in Tocantins due to the isolation of each population, in contrast to Roraima, where gene flow occurred more frequently. The SSR panel used in this work resulted to be informative (polymorphism information content = 0.201) for assessing genetic structure in O. glumaepatula populations.


Subject(s)
Genetics, Population , Microsatellite Repeats , Oryza/genetics , Alleles , Brazil , Cluster Analysis , DNA, Plant , Ecosystem , Evolution, Molecular , Genetic Variation , Geography
19.
Plant Mol Biol ; 86(4-5): 455-70, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25164100

ABSTRACT

The increasing volume of genomic data on the Phaseolus vulgaris species have contributed to its importance as a model genetic species and positively affected the investigation of other legumes of scientific and economic value. To expand and gain a more in-depth knowledge of the common bean genome, the ends of a number of bacterial artificial chromosome (BAC) were sequenced, annotated and the presence of repetitive sequences was determined. In total, 52,270 BESs (BAC-end sequences), equivalent to 32 Mbp (~6 %) of the genome, were processed. In total, 3,789 BES-SSRs were identified, with a distribution of one SSR (simple sequence repeat) per 8.36 kbp and 2,000 were suitable for the development of SSRs, of which 194 were evaluated in low-resolution screening. From 40 BES-SSRs based on long motifs SSRs (≥ trinucleotides) analyzed in high-resolution genotyping, 34 showed an equally good amplification for the Andean and for the Mesoamerican genepools, exhibiting an average gene diversity (H E) of 0.490 and 5.59 alleles/locus, of which six classified as Class I showed a H E ≥ 0.7. The PCoA and structure analysis allowed to discriminate the gene pools (K = 2, FST = 0.733). From the 52,270 BESs, 2 % corresponded to transcription factors and 3 % to transposable elements. Putative functions for 24,321 BESs were identified and for 19,363 were assigned functional categories (gene ontology). This study identified highly polymorphic BES-SSRs containing tri- to hexanucleotides motifs and bringing together relevant genetic characteristics useful for breeding programs. Additionally, the BESs were incorporated into the international genome-sequencing project for the common bean.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , DNA, Plant/genetics , Microsatellite Repeats/genetics , Phaseolus/genetics , Base Sequence , DNA, Plant/chemistry , Genetic Variation , Genome, Plant/genetics , Genomic Library , Genotype , Polymorphism, Genetic , Sequence Analysis, DNA
20.
Am J Bot ; 99(2): e72-3, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22282111

ABSTRACT

PREMISE OF THE STUDY: Microsatellite markers were developed for the population genetic analyses of the neotropical tree Dipteryx alata (Fabaceae). METHODS AND RESULTS: Microsatellites were developed from a genomic shotgun library. Polymorphism at each microsatellite loci was analyzed based on 94 individuals from three populations. Eight loci amplified successfully and presented one to 10 alleles, and expected heterozygosities ranged from 0.097 to 0.862. Four loci also amplified in Pterodon emarginatus and presented similar polymorphism. CONCLUSION: The eight microsatellite primer pairs are potentially suitable for population genetic studies and successfully amplified in another Fabaceae species.


Subject(s)
DNA Primers/genetics , Dipteryx/genetics , Microsatellite Repeats , Alleles , DNA, Plant/genetics , Gene Frequency , Genetic Loci , Genomic Library , Genotyping Techniques , Heterozygote , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...