Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 22(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35746272

ABSTRACT

The operation of a variety of natural or man-made systems subject to uncertainty is maintained within a range of safe behavior through run-time sensing of the system state and control actions selected according to some strategy. When the system is observed from an external perspective, the control strategy may not be known and it should rather be reconstructed by joint observation of the applied control actions and the corresponding evolution of the system state. This is largely hurdled by limitations in the sensing of the system state and different levels of noise. We address the problem of optimal selection of control actions for a stochastic system with unknown dynamics operating under a controller with unknown strategy, for which we can observe trajectories made of the sequence of control actions and noisy observations of the system state which are labeled by the exact value of some reward functions. To this end, we present an approach to train an Input-Output Hidden Markov Model (IO-HMM) as the generative stochastic model that describes the state dynamics of a POMDP by the application of a novel optimization objective adopted from the literate. The learning task is hurdled by two restrictions: the only available sensed data are the limited number of trajectories of applied actions, noisy observations of the system state, and system state; and, the high failure costs prevent interaction with the online environment, preventing exploratory testing. Traditionally, stochastic generative models have been used to learn the underlying system dynamics and select appropriate actions in the defined task. However, current state of the art techniques, in which the state dynamics of the POMDP is first learned and then strategies are optimized over it, frequently fail because the model that best fits the data may not be well suited for controlling. By using the aforementioned optimization objective, we try to to tackle the problems related to model mis-specification. The proposed methodology is illustrated in a scenario of failure avoidance for a multi component system. The quality of the decision making is evaluated by using the collected reward on the test data and compared against the previous literature usual approach.


Subject(s)
Learning , Humans , Markov Chains , Uncertainty
2.
Sensors (Basel) ; 22(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35591091

ABSTRACT

The Assisted Living Environments Research Area-AAL (Ambient Assisted Living), focuses on generating innovative technology, products, and services to assist, medical care and rehabilitation to older adults, to increase the time in which these people can live. independently, whether they suffer from neurodegenerative diseases or some disability. This important area is responsible for the development of activity recognition systems-ARS (Activity Recognition Systems), which is a valuable tool when it comes to identifying the type of activity carried out by older adults, to provide them with assistance. that allows you to carry out your daily activities with complete normality. This article aims to show the review of the literature and the evolution of the different techniques for processing this type of data from supervised, unsupervised, ensembled learning, deep learning, reinforcement learning, transfer learning, and metaheuristics approach applied to this sector of science. health, showing the metrics of recent experiments for researchers in this area of knowledge. As a result of this article, it can be identified that models based on reinforcement or transfer learning constitute a good line of work for the processing and analysis of human recognition activities.


Subject(s)
Ambient Intelligence , Disabled Persons , Activities of Daily Living , Aged , Human Activities , Humans , Technology
3.
Sensors (Basel) ; 20(9)2020 May 09.
Article in English | MEDLINE | ID: mdl-32397446

ABSTRACT

Currently, many applications have emerged from the implementation of software development and hardware use, known as the Internet of things. One of the most important application areas of this type of technology is in health care. Various applications arise daily in order to improve the quality of life and to promote an improvement in the treatments of patients at home that suffer from different pathologies. That is why there has emerged a line of work of great interest, focused on the study and analysis of daily life activities, on the use of different data analysis techniques to identify and to help manage this type of patient. This article shows the result of the systematic review of the literature on the use of the Clustering method, which is one of the most used techniques in the analysis of unsupervised data applied to activities of daily living, as well as the description of variables of high importance as a year of publication, type of article, most used algorithms, types of dataset used, and metrics implemented. These data will allow the reader to locate the recent results of the application of this technique to a particular area of knowledge.


Subject(s)
Activities of Daily Living , Cluster Analysis , Quality of Life , Algorithms , Humans
SELECTION OF CITATIONS
SEARCH DETAIL