Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38793152

ABSTRACT

Simultaneous interrogation of pump and probe beams interacting in ZnO nanostructures of a two-wave mixing is proposed for dual-path data processing of optical signals by nonlinear optical effects. An enhancement in third-order nonlinear optical properties was exhibited by Al-doped ZnO thin films. Multiphoton absorption and nonlinear refraction were explored by the z-scan technique at 532 nm with nanosecond pulses. The evolution of the optical Kerr effect in the ZnO thin films was analyzed as a function of the incorporation of Al in the sample by a vectorial two-wave mixing method. Electrical and photoconductive effects were evaluated to further characterize the influence of Al in the ZnO solid samples. Potential applications of nonlinear optical parameters for encoding and encrypting information in light can be envisioned.

2.
Polymers (Basel) ; 16(4)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38399875

ABSTRACT

Hyaluronan (HA) is a natural biodegradable biopolymer; its biological functions include cell adhesion, cell proliferation, and differentiation as well as decreasing inflammation, angiogenesis, and regeneration of damaged tissue. This makes it a suitable candidate for fabricating nanomaterials with potential use in tissue engineering. However, HA nanofiber production is restricted due to the high viscosity, low evaporation rate, and high surface tension of HA solutions. Here, hybrids in the form of continuous and randomly aligned polyvinyl alcohol (PVA)-(HA)-siloxane nanofibers were obtained using an electrospinning process. PVA-HA fibers were crosslinked by a 3D siloxane organic-inorganic matrix via sol-gel that restricts natural hydrophilicity and stiffens the structure. The hybrid nanofiber mats were characterized by FT-IR, micro-Raman spectroscopy, SEM, and biological properties. The PVA/HA ratio influenced the morphology of the hybrid nanofibers. Nanofibers with high PVA content (10PVA-8 and 10PVA-10) form mats with few beaded nanofibers, while those with high HA content (5PVA-8 and 5PVA-10) exhibit mats with mound patterns formed by "ribbon-like" nanofibers. The hybrid nanofibers were used as mats to support osteoblast growth, and they showed outstanding biological properties supporting cell adhesion, cell proliferation, and cell differentiation. Importantly, the 5PVA-8 mats show 3D spherical osteoblast morphology; this suggests the formation of tissue growth. These novel HA-based nanomaterials represent a relevant advance in designing nanofibers with unique properties for potential tissue regeneration.

3.
Opt Express ; 30(22): 39849-39859, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36298927

ABSTRACT

Herein is analyzed how an electric field can induce a band gap shift in NiO films to generate an enhancement in their third-order optical nonlinearities. An electrochromic effect seems to be responsible for changes in absorbance and modification in off-resonance nonlinear refractive index. The optical Kerr effect was determined as the dominant physical mechanism emerging from the third-order optical susceptibility processes present in a nanosecond two-wave mixing configuration at 532 nm wavelength. Absence of any important multi-photonic absorption was validated by the constant trace of high-irradiance optical transmittance in single-beam mode. The inspection of nonlinear optical signals allowed us to propose an exclusive disjunctive logic gate assisted by an electrochromic effect in an optical Kerr gate. Asymmetric encryption by our XOR system with the influence of a switchable probe beam transmittance and electrical signals in the sample was studied. Immediate applications for developing multifunctional quantum systems driven by dynamic parameters in electrochromic and nonlinear optical materials were highlighted.

4.
Sensors (Basel) ; 19(21)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683534

ABSTRACT

The evolution of the optical absorptive effects exhibited by plasmonic nanoparticles was systematically analyzed by electronic signals modulated by a Rössler attractor system. A sol-gel approach was employed for the preparation of the studied Au nanoparticles embedded in a TiO2 thin solid film. The inclusion of the nanoparticles in an inhomogeneous biological sample integrated by human cells deposited in an ITO glass substrate was evaluated with a high level of sensitivity using an opto-electronic chaotic circuit. The optical response of the nanoparticles was determined using nanosecond laser pulses in order to guarantee the sensing performance of the system. It was shown that high-intensity irradiances at a wavelength of 532 nm could promote a change in the absorption band of the localized surface plasmon resonance associated with an increase in the nanoparticle density of the film. Moreover, it was revealed that interferometrically-controlled energy transfer mechanisms can be useful for thermo-plasmonic functions and sharp selective optical damage induced by the vectorial nature of light. Immediate applications of two-wave mixing techniques, together with chaotic effects, can be contemplated in the development of nanostructured sensors and laser-induced controlled explosions, with potential applications for biomedical photo-thermal processes.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Osteoblasts/metabolism , Calibration , Cell Line , Dielectric Spectroscopy , Electric Conductivity , Humans , Image Processing, Computer-Assisted , Laser Therapy , Osteoblasts/ultrastructure , Spectrophotometry, Ultraviolet , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL