Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters











Publication year range
1.
Mol Biol Cell ; : mbcE24040188, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292916

ABSTRACT

In yeasts and higher eukaryotes, chromatin motions may be tuned to genomic functions, with transcriptional activation and the DNA damage response both leading to profound changes in chromatin dynamics. The RAD51 recombinase is a key mediator of chromatin mobility following DNA damage. As functions of RAD51 beyond DNA repair are being discovered, we asked if RAD51 modulates chromatin dynamics in the absence of DNA damage and found that inhibition or depletion of RAD51 alters chromatin motions in undamaged cells. Inhibition of RAD51 increased nucleosome clustering. Predictions from polymer models are that chromatin clusters reduce chain mobility and, indeed, we measured reduced motion of individual chromatin loci in cells treated with a RAD51 inhibitor. This effect was conserved in mammalian cells, yeasts, and plant cells. In contrast, RAD51 depletion or inhibition increased global chromatin motions at the microscale. The results uncover a role for RAD51 in regulating local and global chromatin dynamics independently from DNA damage and highlight the importance of considering different physical scales when studying chromatin dynamics.

2.
Expo Health ; 16(4): 1039-1052, 2024.
Article in English | MEDLINE | ID: mdl-39220725

ABSTRACT

The intersectional risks of children in United States immigrant communities include environmental exposures. Pesticide exposures and their biological outcomes are not well characterized in this population group. We assessed pesticide exposure and related these exposures to DNA double-strand breaks (DSBs) in Latinx children from rural, farmworker families (FW; N = 30) and from urban, non-farmworker families (NFW; N = 15) living in North Carolina. DSBs were quantified in hair follicular cells by immunostaining of 53BP1, and exposure to 72 pesticides and pesticide degradation products were determined using silicone wristbands. Cholinesterase activity was measured in blood samples. DSB frequencies were higher in FW compared to NFW children. Seasonal effects were detected in the FW group, with highest DNA damage levels in April-June and lowest levels in October-November. Acetylcholinesterase depression had the same seasonality and correlated with follicular DNA damage. Organophosphate pesticides were more frequently detected in FW than in NFW children. Participants with organophosphate detections had increased follicular DNA damage compared to participants without organophosphate detection. Follicular DNA damage did not correlate with organochlorine or pyrethroid detections and was not associated with the total number of pesticides detected in the wristbands. These results point to rural disparities in pesticide exposures and their outcomes in children from vulnerable immigrant communities. They suggest that among the different classes of pesticides, organophosphates have the strongest genotoxic effects. Assessing pesticide exposures and their consequences at the individual level is key to environmental surveillance programs. To this end, the minimally invasive combined approach used here is particularly well suited for children. Supplementary Information: The online version contains supplementary material available at 10.1007/s12403-023-00609-1.

3.
NPJ Breast Cancer ; 9(1): 35, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37160903

ABSTRACT

Molecular links between breast cancer risk factors and pro-oncogenic tissue alterations are poorly understood. The goal of this study was to characterize the impact of overweight and obesity on tissue markers of risk, using normal breast biopsies, a mouse model of diet-induced obesity, and cultured breast acini. Proliferation and alteration of epithelial polarity, both necessary for tumor initiation, were quantified by immunostaining. High BMI (>30) and elevated leptin were associated with compromised epithelial polarity whereas overweight was associated with a modest increase in proliferation in human and mice mammary glands. Human serum with unfavorable adipokine levels altered epithelial polarization of cultured acini, recapitulating the effect of leptin. Weight loss in mice led to metabolic improvements and restored epithelial polarity. In acini cultures, alteration of epithelial polarity was prevented by antioxidants and could be reverted by normalizing culture conditions. This study shows that obesity and/or dietary factors modulate tissue markers of risk. It provides a framework to set target values for metabolic improvements and to assess the efficacy of interventional studies aimed at reducing breast cancer risk.

4.
Proc Natl Acad Sci U S A ; 119(29): e2205166119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858349

ABSTRACT

Chromatin motions depend on and may regulate genome functions, in particular the DNA damage response. In yeast, DNA double-strand breaks (DSBs) globally increase chromatin diffusion, whereas in higher eukaryotes the impact of DSBs on chromatin dynamics is more nuanced. We mapped the motions of chromatin microdomains in mammalian cells using diffractive optics and photoactivatable chromatin probes and found a high level of spatial heterogeneity. DNA damage reduces heterogeneity and imposes spatially defined shifts in motions: Distal to DNA breaks, chromatin motions are globally reduced, whereas chromatin retains higher mobility at break sites. These effects are driven by context-dependent changes in chromatin compaction. Photoactivated lattices of chromatin microdomains are ideal to quantify microscale coupling of chromatin motion. We measured correlation distances up to 2 µm in the cell nucleus, spanning chromosome territories, and speculate that this correlation distance between chromatin microdomains corresponds to the physical separation of A and B compartments identified in chromosome conformation capture experiments. After DNA damage, chromatin motions become less correlated, a phenomenon driven by phase separation at DSBs. Our data indicate tight spatial control of chromatin motions after genomic insults, which may facilitate repair at the break sites and prevent deleterious contacts of DSBs, thereby reducing the risk of genomic rearrangements.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin , DNA Breaks, Double-Stranded , DNA Repair , Animals , Chromatin/chemistry , Chromosomes , Saccharomyces cerevisiae/genetics
5.
J Biomed Opt ; 27(12): 126501, 2022 12.
Article in English | MEDLINE | ID: mdl-36590978

ABSTRACT

Significance: Three-dimensional (3D) imaging and object tracking is critical for medical and biological research and can be achieved by multifocal imaging with diffractive optical elements (DOEs) converting depth ( z ) information into a modification of the two-dimensional image. Physical insight into DOE designs will spur this expanding field. Aim: To precisely track microscopic fluorescent objects in biological systems in 3D with a simple low-cost DOE system. Approach: We designed a multiring spiral phase plate (SPP) generating a single-spot rotating point spread function (SS-RPSF) in a microscope. Our simple, analytically transparent design process uses Bessel beams to avoid rotational ambiguities and achieve a significant depth range. The SPP was inserted into the Nomarski prism slider of a standard microscope. Performance was evaluated using fluorescent beads and in live cells expressing a fluorescent chromatin marker. Results: Bead localization precision was < 25 nm in the transverse dimensions and ≤ 70 nm along the axial dimension over an axial range of 6 µ m . Higher axial precision ( ≤ 50 nm ) was achieved over a shallower focal depth of 2.9 µ m . 3D diffusion constants of chromatin matched expected values. Conclusions: Precise 3D localization and tracking can be achieved with a SS-RPSF SPP in a standard microscope with minor modifications.


Subject(s)
Imaging, Three-Dimensional , Optical Devices , Imaging, Three-Dimensional/methods , Microscopy , Chromatin
6.
Mutat Res ; 824: 111772, 2022.
Article in English | MEDLINE | ID: mdl-34923215

ABSTRACT

The study of radiation effects on biological tissues is a diverse field of research with direct applications to improve human health, in particular in the contexts of radiation therapy and space exploration. Understanding the DNA damage response following radiation exposure, which is a key determinant for mutagenesis, requires reproducible methods for delivering known doses of ionizing radiation (IR) in a controlled environment. Multiple IR sources, including research X-ray and gamma-ray irradiators are routinely used in basic and translational research with cell and animal models. These systems are however not ideal when a high temporal resolution is needed, for example to study early DNA damage responses with live cell microscopy. Here, we characterize the dose rate and beam properties of a commercial, miniature, affordable, and versatile X-ray source (Mini-X). We describe how to use Mini-X on the stage of a fluorescence microscope to deliver high IR dose rates (up to 29 Gy/min) or lower dose rates (≤ 0.1 Gy/min) in live cell imaging experiments. This article provides a blueprint for radiation biology applications with high temporal resolution, with a step-by-step guide to implement a miniature X-ray system on an imaging platform, and the information needed to characterize the system.


Subject(s)
Microscopy , Radiobiology , Animals , Radiation, Ionizing , X-Rays
8.
Cancer Res ; 81(14): 3890-3904, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34083249

ABSTRACT

Obesity and poor diet often go hand-in-hand, altering metabolic signaling and thereby impacting breast cancer risk and outcomes. We have recently demonstrated that dietary patterns modulate mammary microbiota populations. An important and largely open question is whether the microbiome of the gut and mammary gland mediates the dietary effects on breast cancer. To address this, we performed fecal transplants between mice on control or high-fat diets (HFD) and recorded mammary tumor outcomes in a chemical carcinogenesis model. HFD induced protumorigenic effects, which could be mimicked in animals fed a control diet by transplanting HFD-derived microbiota. Fecal transplants altered both the gut and mammary tumor microbiota populations, suggesting a link between the gut and breast microbiomes. HFD increased serum levels of bacterial lipopolysaccharide (LPS), and control diet-derived fecal transplant reduced LPS bioavailability in HFD-fed animals. In vitro models of the normal breast epithelium showed that LPS disrupts tight junctions (TJ) and compromises epithelial permeability. In mice, HFD or fecal transplant from animals on HFD reduced expression of TJ-associated genes in the gut and mammary gland. Furthermore, infecting breast cancer cells with an HFD-derived microbiome increased proliferation, implicating tumor-associated bacteria in cancer signaling. In a double-blind placebo-controlled clinical trial of patients with breast cancer administered fish oil supplements before primary tumor resection, dietary intervention modulated the microbiota in tumors and normal breast tissue. This study demonstrates a link between the gut and breast that mediates the effect of diet on cancer. SIGNIFICANCE: This study demonstrates that diet shifts the microbiome in the gut and the breast tumor microenvironment to affect tumorigenesis, and oral dietary interventions can modulate the tumor microbiota in patients with breast cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/14/3890/F1.large.jpg.


Subject(s)
Breast/physiopathology , Diet, High-Fat/adverse effects , Animals , Carcinogenesis , Female , Humans , Mice , Microbiota , Signal Transduction
9.
Mol Biol Cell ; 32(9): 903-914, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33502895

ABSTRACT

Particle tracking in living systems requires low light exposure and short exposure times to avoid phototoxicity and photobleaching and to fully capture particle motion with high-speed imaging. Low-excitation light comes at the expense of tracking accuracy. Image restoration methods based on deep learning dramatically improve the signal-to-noise ratio in low-exposure data sets, qualitatively improving the images. However, it is not clear whether images generated by these methods yield accurate quantitative measurements such as diffusion parameters in (single) particle tracking experiments. Here, we evaluate the performance of two popular deep learning denoising software packages for particle tracking, using synthetic data sets and movies of diffusing chromatin as biological examples. With synthetic data, both supervised and unsupervised deep learning restored particle motions with high accuracy in two-dimensional data sets, whereas artifacts were introduced by the denoisers in three-dimensional data sets. Experimentally, we found that, while both supervised and unsupervised approaches improved tracking results compared with the original noisy images, supervised learning generally outperformed the unsupervised approach. We find that nicer-looking image sequences are not synonymous with more precise tracking results and highlight that deep learning algorithms can produce deceiving artifacts with extremely noisy images. Finally, we address the challenge of selecting parameters to train convolutional neural networks by implementing a frugal Bayesian optimizer that rapidly explores multidimensional parameter spaces, identifying networks yielding optimal particle tracking accuracy. Our study provides quantitative outcome measures of image restoration using deep learning. We anticipate broad application of this approach to critically evaluate artificial intelligence solutions for quantitative microscopy.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy/methods , Algorithms , Artifacts , Artificial Intelligence , Bayes Theorem , Cell Line, Tumor , Deep Learning , Humans , Neural Networks, Computer , Signal-To-Noise Ratio
12.
Nucleic Acids Res ; 47(6): 2703-2715, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30812030

ABSTRACT

P53-binding protein 1 (53BP1) mediates DNA repair pathway choice and promotes checkpoint activation. Chromatin marks induced by DNA double-strand breaks and recognized by 53BP1 enable focal accumulation of this multifunctional repair factor at damaged chromatin. Here, we unveil an additional level of regulation of 53BP1 outside repair foci. 53BP1 movements are constrained throughout the nucleoplasm and increase in response to DNA damage. 53BP1 interacts with the structural protein NuMA, which controls 53BP1 diffusion. This interaction, and colocalization between the two proteins in vitro and in breast tissues, is reduced after DNA damage. In cell lines and breast carcinoma NuMA prevents 53BP1 accumulation at DNA breaks, and high NuMA expression predicts better patient outcomes. Manipulating NuMA expression alters PARP inhibitor sensitivity of BRCA1-null cells, end-joining activity, and immunoglobulin class switching that rely on 53BP1. We propose a mechanism involving the sequestration of 53BP1 by NuMA in the absence of DNA damage. Such a mechanism may have evolved to disable repair functions and may be a decisive factor for tumor responses to genotoxic treatments.


Subject(s)
Antigens, Nuclear/physiology , DNA Breaks, Double-Stranded , DNA Repair/genetics , Nuclear Matrix-Associated Proteins/physiology , Tumor Suppressor p53-Binding Protein 1/metabolism , Cell Cycle Proteins , Cells, Cultured , DNA End-Joining Repair/genetics , Down-Regulation , Female , HEK293 Cells , Humans , Protein Binding
13.
Oncogene ; 38(20): 3855-3870, 2019 05.
Article in English | MEDLINE | ID: mdl-30670780

ABSTRACT

Obesity is a highly prevalent and modifiable breast cancer risk factor. While the role of obesity in fueling breast cancer progression is well established, the mechanisms linking obesity to breast cancer initiation are poorly understood. A hallmark of breast cancer initiation is the disruption of apical polarity in mammary glands. Here we show that mice with diet-induced obesity display mislocalization of Par3, a regulator of cellular junctional complexes defining mammary epithelial polarity. We found that epithelial polarity loss also occurs in a 3D coculture system that combines acini with human mammary adipose tissue, and establish that a paracrine effect of the tissue adipokine leptin causes loss of polarity by overactivation of the PI3K/Akt pathway. Leptin sensitizes non-neoplastic cells to proliferative stimuli, causes mitotic spindle misalignment, and expands the pool of cells with stem/progenitor characteristics, which are early steps for cancer initiation. We also found that normal breast tissue samples with high leptin/adiponectin transcript ratio characteristic of obesity have an altered distribution of apical polarity markers. This effect is associated with increased epithelial cell layers. Our results provide a molecular basis for early alterations in epithelial architecture during obesity-mediated cancer initiation.


Subject(s)
Breast Neoplasms/pathology , Leptin/blood , Mammary Glands, Animal/pathology , Mammary Glands, Human/pathology , Adaptor Proteins, Signal Transducing , Adipokines/metabolism , Adipose Tissue/metabolism , Animals , Body Mass Index , Breast Neoplasms/metabolism , Cell Adhesion Molecules/metabolism , Cell Cycle Proteins , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Humans , Leptin/genetics , Leptin/metabolism , Mammary Glands, Human/metabolism , Mice, Inbred BALB C , Obesity/metabolism , Obesity/pathology , Precancerous Conditions , Spindle Apparatus/metabolism , Spindle Apparatus/pathology
14.
FASEB Bioadv ; 1(10): 639-660, 2019 Oct.
Article in English | MEDLINE | ID: mdl-32123812

ABSTRACT

Silver nanoparticles (AgNPs) show promise for treatment of aggressive cancers including triple-negative breast cancer (TNBC) in preclinical cancer models. For clinical development of AgNP-based therapeutics, it will be necessary to clearly define the specific physicochemical features of the nanoparticles that will be used, and to tie these properties to biological outcomes. To fill this knowledge gap, we performed thorough structure/function, mechanistic, safety, and efficacy studies to assess the potential for AgNPs to treat TNBC. We establish that AgNPs, regardless of size, shape, or stabilizing agent, are highly cytotoxic to TNBC cells at doses that are not cytotoxic to non-malignant breast epithelial cells. In contrast, TNBC cells and non-malignant breast epithelial cells are similarly sensitive to exposure to silver cation (Ag+), indicating that the nanoparticle formulation is essential for the TNBC-specific cytotoxicity. Mechanistically, AgNPs are internalized by both TNBC and non-malignant breast cells, but are rapidly degraded only in TNBC cells. Exposure to AgNPs depletes cellular antioxidants and causes endoplasmic reticulum stress in TNBC cells without causing similar damage in non-malignant breast epithelial cells. AgNPs also cause extensive DNA damage in 3D TNBC tumor nodules in vitro, but do not disrupt the normal architecture of breast acini in 3D cell culture, nor cause DNA damage or induce apoptosis in these structures. Lastly, we show that systemically administered AgNPs are effective at non-toxic doses for reducing the growth of TNBC tumor xenografts in mice. This work provides a rationale for development of AgNPs as a safe and specific TNBC treatment.

15.
Front Med (Lausanne) ; 6: 314, 2019.
Article in English | MEDLINE | ID: mdl-31998733

ABSTRACT

Preventing cancer is vastly better than treating the disease in terms of a patient's quality of life and healthcare costs. Yet, to screen for chemopreventative drugs or evaluate interventions aimed at lowering cancer risk, quantitative readouts of risk are needed. In the breast and in other organs of epithelial origin, apical-basal polarity is key to homeostasis and is one of the first tissue characteristics lost during cancer initiation. Therefore, apical-basal polarity may be leveraged as an "architectural" determinant of cancer risk. A classic approach to quantify the localization of epithelial polarity markers is visual scoring at the microscope by trained investigators. This approach is time-intensive and limited to low throughput. To increase the speed, accuracy, and scoring volume, we developed an algorithm that essentially replaces the human eye to objectively quantify epithelial polarity in microscopy images of breast glandular units (acini). Acini in culture are identified based on a nuclear stain and the corresponding masks are divided into concentric terraces of equal width. This positional information is used to calculate radial intensity profiles (RP) of polarity markers. Profiles with a steep slope represent polarized structures, whereas more horizontal curves are indicative of non-polarized acini. To compare treatment effects, RP curves are integrated into summary values of polarity. We envision applications of this method for primary cancer prevention research with acini organoids, specifically (1) to screen for chemoprevention drugs, (2) for toxicological assessment of suspected carcinogens and pharmacological hit compounds, and (3) for personalized evaluation of cancer risk and risk-reducing interventions. The RadialProfiler algorithm developed for the MATLAB computing environment and for users without prior informatics knowledge is publicly available on the Open Science Framework (OSF).

16.
Cancer Res ; 78(15): 4316-4330, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30026327

ABSTRACT

Up to 30% of patients with metastatic breast cancer eventually develop brain metastasis, yet the pathologic mechanism behind this development remains poorly understood. Here, we profiled long noncoding RNAs in brain metastatic tumors from patients with breast cancer and found that the X-inactive-specific transcript (XIST) was significantly downregulated in these tissues. XIST expression levels inversely correlated with brain metastasis, but not with bone metastasis in patients. Silencing of XIST preferentially promoted brain metastatic growth of XISThigh cells in our xenograft models. Moreover, knockout of XIST in mice mammary glands accelerated primary tumor growth as well as metastases in the brain. Decreased expression of XIST stimulated epithelial-mesenchymal transition and activated c-Met via MSN-mediated protein stabilization, which resulted in the promotion of stemness in the tumor cells. Loss of XIST also augmented secretion of exosomal miRNA-503, which triggered M1-M2 polarization of microglia. This M1-M2 conversion upregulated immune suppressive cytokines in microglia that suppressed T-cell proliferation. Furthermore, we screened an FDA-approved drug library and identified fludarabine as a synthetic lethal drug for XISTlow breast tumor cells and found that fludarabine blocked brain metastasis in our animal model. Our results indicate that XIST plays a critical role in brain metastasis in breast cancer by affecting both tumor cells and the tumor microenvironment and that the XIST-mediated pathway may serve as an effective target for treating brain metastasis.Significance: These findings describe mechanisms of how loss of the lncRNA XIST promotes brain metastasis in breast cancer and identify fludarabine as a potential therapeutic agent that specifically eliminates XISTlow tumor cells in the brain. Cancer Res; 78(15); 4316-30. ©2018 AACR.


Subject(s)
Bone Neoplasms/genetics , Exosomes/genetics , MicroRNAs/genetics , Microfilament Proteins/genetics , Microglia/pathology , Proto-Oncogene Proteins c-met/genetics , RNA, Long Noncoding/genetics , Animals , Bone Neoplasms/pathology , Brain/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , MCF-7 Cells , Mice , Mice, Nude , Tumor Microenvironment/genetics , Up-Regulation/genetics
17.
J Biomed Opt ; 23(5): 1-8, 2018 05.
Article in English | MEDLINE | ID: mdl-29766687

ABSTRACT

We describe a simple optical method that creates structured illumination of a photoactivatable probe and apply this method to characterize chromatin motions in nuclei of live cells. A laser beam coupled to a diffractive optical element at the back focal plane of an excitation objective generates an array of near diffraction-limited beamlets with FWHM of 340 ± 30 nm, which simultaneously photoactivate a 7 × 7 matrix pattern of GFP-labeled histones, with spots 1.70 µm apart. From the movements of the photoactivated spots, we map chromatin diffusion coefficients at multiple microdomains of the cell nucleus. The results show correlated motions of nearest chromatin microdomain neighbors, whereas chromatin movements are uncorrelated at the global scale of the nucleus. The method also reveals a DNA damage-dependent decrease in chromatin diffusion. The diffractive optical element instrumentation can be easily and cheaply implemented on commercial inverted fluorescence microscopes to analyze adherent cell culture models. A protocol to measure chromatin motions in nonadherent human hematopoietic stem and progenitor cells is also described. We anticipate that the method will contribute to the identification of the mechanisms regulating chromatin mobility, which influences most genomic processes and may underlie the biogenesis of genomic translocations associated with hematologic malignancies.


Subject(s)
Chromatin/chemistry , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Cell Line, Tumor , Cell Movement/physiology , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Chromatin/metabolism , Equipment Design , Histones/chemistry , Humans , Lighting , Microscopy, Fluorescence/instrumentation
18.
Nucleic Acids Res ; 45(20): 11725-11742, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-28981686

ABSTRACT

The nuclear mitotic apparatus protein, NuMA, is involved in major cellular events such as DNA damage response, apoptosis and p53-mediated growth-arrest, all of which are under the control of the nucleolus upon stress. Proteomic investigation has identified NuMA among hundreds of nucleolar proteins. Yet, the precise link between NuMA and nucleolar function remains undetermined. We confirm that NuMA is present in the nucleolus and reveal redistribution of NuMA upon actinomycin D or doxorubicin-induced nucleolar stress. NuMA coimmunoprecipitates with RNA polymerase I, with ribosomal proteins RPL26 and RPL24, and with components of B-WICH, an ATP-dependent chromatin remodeling complex associated with rDNA transcription. NuMA also binds to 18S and 28S rRNAs and localizes to rDNA promoter regions. Downregulation of NuMA expression triggers nucleolar stress, as shown by decreased nascent pre-rRNA synthesis, fibrillarin perinucleolar cap formation and upregulation of p27kip1, but not p53. Physiologically relevant nucleolar stress induction with reactive oxygen species reaffirms a p53-independent p27kip1 response pathway and leads to nascent pre-rRNA reduction. It also promotes the decrease in the amount of NuMA. This previously uncharacterized function of NuMA in rDNA transcription and p53-independent nucleolar stress response supports a central role for this nuclear structural protein in cellular homeostasis.


Subject(s)
Antigens, Nuclear/genetics , Cell Nucleolus/genetics , DNA, Ribosomal/genetics , Nuclear Matrix-Associated Proteins/genetics , Transcription, Genetic , Antigens, Nuclear/metabolism , Blotting, Western , Cell Cycle Proteins , Cell Line , Cell Line, Tumor , Cell Nucleolus/drug effects , Cell Nucleolus/ultrastructure , Chromosomal Proteins, Non-Histone/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Dactinomycin/pharmacology , Doxorubicin/pharmacology , Humans , Microscopy, Electron , Nuclear Matrix-Associated Proteins/metabolism , Protein Binding , RNA Interference , RNA Polymerase I/metabolism , RNA, Ribosomal/metabolism , Ribosomal Proteins/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
19.
Article in English | MEDLINE | ID: mdl-28844239

ABSTRACT

Agriculture in the United States employs youth ages ten and older in work environments with high pesticide levels. Younger children in rural areas may also be affected by indirect pesticide exposures. The long-term effects of pesticides on health and development are difficult to assess and poorly understood. Yet, epidemiologic studies suggest associations with cancer as well as cognitive deficits. We report a practical and cost-effective approach to assess environmental pesticide exposures and their biological consequences in children. Our approach combines silicone wristband personal samplers and DNA damage quantification from hair follicles, and was tested as part of a community-based participatory research (CBPR) project involving ten Latino children from farmworker households in North Carolina. Our study documents high acceptance among Latino children and their caregivers of these noninvasive sampling methods. The personal samplers detected organophosphates, organochlorines, and pyrethroids in the majority of the participants (70%, 90%, 80%, respectively). Pesticides were detected in all participant samplers, with an average of 6.2±2.4 detections/participant sampler. DNA damage in epithelial cells from the sheath and bulb of plucked hairs follicles was quantified by immunostaining 53BP1-labled DNA repair foci. This method is sensitive, as shown by dose response analyses to γ radiations where the lowest dose tested (0.1Gy) led to significant increased 53BP1 foci density. Immunolabeling of DNA repair foci has significant advantages over the comet assay in that specific regions of the follicles can be analyzed. In this cohort of child participants, significant association was found between the number of pesticide detections and DNA damage in the papilla region of the hairs. We anticipate that this monitoring approach of bioavailable pesticides and genotoxicity will enhance our knowledge of the biological effects of pesticides to guide education programs and safety policies.


Subject(s)
DNA Damage , DNA Repair , Environmental Exposure , Hair Follicle/drug effects , Pesticides , Specimen Handling/instrumentation , Biological Availability , Child , Community-Based Participatory Research , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Hair Follicle/metabolism , Humans , North Carolina , Pesticides/analysis , Pesticides/pharmacokinetics , Pesticides/toxicity , Risk Assessment
20.
Exp Cell Res ; 351(1): 11-23, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28034673

ABSTRACT

Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative "imaging-derived" parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions.


Subject(s)
Antigens, Nuclear/metabolism , Cell Nucleus/metabolism , Cell Transformation, Neoplastic , Mesenchymal Stem Cells/cytology , Nuclear Matrix-Associated Proteins/metabolism , Adipocytes/cytology , Antigens, Nuclear/genetics , Cell Cycle Proteins , Cell Differentiation , Cell Line , Cell Nucleus/ultrastructure , Cell Separation/methods , Cells, Cultured , Humans , Mesenchymal Stem Cells/metabolism , Nuclear Matrix-Associated Proteins/genetics , Osteocytes/cytology , Single-Cell Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL