Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 14(11): 1582-1588, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37974949

ABSTRACT

Plasmepsin X (PMX) has been identified as a multistage antimalarial target. PMX is a malarial aspartyl protease essential for merozoite egress from infected red blood cells and invasion of the host erythrocytes. Previously, we reported the identification of PMX inhibitors by structure-based optimization of a cyclic guanidine core. Preclinical assessment of UCB7362, which displayed both in vitro and in vivo antimalarial activity, revealed a suboptimal dose paradigm (once daily dosing of 50 mg for 7 days for treatment of uncomplicated malaria) relative to current standard of care (three-dose regime). We report here the efforts toward extending the half-life (t1/2) by reducing metabolic clearance and increasing volume of distribution (Vss). Our efforts culminated in the identification of a biaryl series, with an expected longer t1/2 in human than UCB7362 while maintaining a similar in vitro off-target hit rate.

2.
RSC Med Chem ; 13(12): 1614-1620, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36545433

ABSTRACT

Fragment-based drug discovery is now widely adopted for lead generation in the pharmaceutical industry. However, fragment screening collections are often predominantly populated with flat, 2D molecules. Herein, we report the synthesis of piperidine-based 3D fragment building blocks - 20 regio- and diastereoisomers of methyl substituted pipecolinates using simple and general synthetic methods. cis-Piperidines, accessed through a pyridine hydrogenation were transformed into their trans-diastereoisomers using conformational control and unified reaction conditions. Additionally, diastereoselective lithiation/trapping was utilised to access trans-piperidines. Analysis of a virtual library of fragments derived from the 20 cis- and trans-disubstituted piperidines showed that it consisted of 3D molecules with suitable molecular properties to be used in fragment-based drug discovery programs.

3.
ACS Med Chem Lett ; 13(2): 171-181, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35178172

ABSTRACT

The GPVI platelet receptor was recently validated as a safe antiplatelet target for the treatment of thrombosis using several peptidic modulators. In contrast, few weakly potent small-molecule GPVI antagonists have been reported. Those that have been published often lack evidence for target engagement, and their biological efficacy cannot be compared because of the natural donor variability associated with the assays implemented. Herein, we present the first side-by-side assessment of the reported GPVI small-molecule modulators. We have characterized their functional activities on platelet activation and aggregation using flow cytometry as well as light transmission and electrical impedance aggregometry. We also utilized microscale thermophoresis (MST) and saturation transfer difference (STD) NMR to validate GPVI binding and have used this along with molecular modeling to suggest potential binding interactions. We conclude that of the compounds examined, losartan and compound 5 are currently the most viable GPVI modulators.

4.
Sci Rep ; 10(1): 16000, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994435

ABSTRACT

Heat shock protein 90 (Hsp90) is a molecular chaperone that plays an important role in tumour biology by promoting the stabilisation and activity of oncogenic 'client' proteins. Inhibition of Hsp90 by small-molecule drugs, acting via its ATP hydrolysis site, has shown promise as a molecularly targeted cancer therapy. Owing to the importance of Hop and other tetratricopeptide repeat (TPR)-containing cochaperones in regulating Hsp90 activity, the Hsp90-TPR domain interface is an alternative site for inhibitors, which could result in effects distinct from ATP site binders. The TPR binding site of Hsp90 cochaperones includes a shallow, positively charged groove that poses a significant challenge for druggability. Herein, we report the apo, solution-state structure of Hop TPR2A which enables this target for NMR-based screening approaches. We have designed prototype TPR ligands that mimic key native 'carboxylate clamp' interactions between Hsp90 and its TPR cochaperones and show that they block binding between Hop TPR2A and the Hsp90 C-terminal MEEVD peptide. We confirm direct TPR-binding of these ligands by mapping 1H-15N HSQC chemical shift perturbations to our new NMR structure. Our work provides a novel structure, a thorough assessment of druggability and robust screening approaches that may offer a potential route, albeit difficult, to address the chemically challenging nature of the Hop TPR2A target, with relevance to other TPR domain interactors.


Subject(s)
Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Small Molecule Libraries/pharmacology , Catalytic Domain , Computer Simulation , Humans , Ligands , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation , Protein Domains , Small Molecule Libraries/chemistry
5.
Chemistry ; 26(41): 8969-8975, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32315100

ABSTRACT

Fragment-based drug discovery is now widely adopted for lead generation in the pharmaceutical industry. However, fragment screening collections are often predominantly populated with flat, 2D molecules. Herein, we describe a workflow for the design and synthesis of 56 3D disubstituted pyrrolidine and piperidine fragments that occupy under-represented areas of fragment space (as demonstrated by a principal moments of inertia (PMI) analysis). A key, and unique, underpinning design feature of this fragment collection is that assessment of fragment shape and conformational diversity (by considering conformations up to 1.5 kcal mol-1 above the energy of the global minimum energy conformer) is carried out prior to synthesis and is also used to select targets for synthesis. The 3D fragments were designed to contain suitable synthetic handles for future fragment elaboration. Finally, by comparing our 3D fragments with six commercial libraries, it is clear that our collection has high three-dimensionality and shape diversity.

6.
ACS Med Chem Lett ; 10(7): 1051-1055, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31312407

ABSTRACT

The virtual assistant concept is one that many technology companies have taken on despite having other well-developed and popular user interfaces. We wondered whether it would be possible to create an effective virtual assistant for a medicinal chemistry organization, the key being delivering the information the user would want to see, directly to them, at the right time. We introduce Kernel, an early prototype virtual assistant created at Lilly, and a number of examples of the scenarios that have been implemented to try to demonstrate the concept. A biochemical assay summary email is described that brings together new results and some basic analysis, delivered within an hour of new data appearing for that assay, and an email delivering new compound design ideas directly to the original submitter of a compound shortly after their compound was tested for the first time. We conclude with a high level description of the first example of a Design-Make-Test-Analyze cycle completed in the absence of any human intellectual input at Lilly. We believe that this concept has much potential in changing the way that computational results and analysis are delivered and consumed within a medicinal chemistry group, and we hope to inspire others to implement their own similar solutions.

7.
Bioinformatics ; 35(21): 4509-4510, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31070721

ABSTRACT

SUMMARY: We present software to characterize and rank potential therapeutic (drug) targets with data from public databases and present it in a user-friendly format. By understanding potential obstacles to drug development through the gathering and understanding of this information, combined with robust approaches to target validation to generate therapeutic hypotheses, this approach may provide high quality targets, leading the process of drug development to become more efficient and cost-effective. AVAILABILITY AND IMPLEMENTATION: The information we gather on potential targets concerns small-molecule druggability (ligandability), suitability for large-molecule approaches (e.g. antibodies) or new modalities (e.g. antisense oligonucleotides, siRNA or PROTAC), feasibility (availability of resources such as assays and biological knowledge) and potential safety risks (adverse tissue-wise expression, deleterious phenotypes). This information can be termed 'tractability'. We provide visualization tools to understand its components. TractaViewer is available from https://github.com/NeilPearson-Lilly/TractaViewer. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome , Software , Databases, Factual
8.
ACS Med Chem Lett ; 9(8): 792-796, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30128069

ABSTRACT

Biochemical assay interference is becoming increasingly recognized as a significant waste of resource in drug discovery, both in industry and academia. A seminal publication from Baell and Holloway raised the awareness of this issue, and they published a set of alerts to identify what they described as PAINS (pan-assay interference compounds). These alerts have been taken up by drug discovery groups, even though the original paper had a somewhat limited data set. Here, we have taken Lilly's far larger internal data set to assess the PAINS alerts on four criteria: promiscuity (over six assay formats including AlphaScreen), compound stability, cytotoxicity, and presence of a high Hill slope as a surrogate for non-1:1 protein-ligand binding. It was found that only three of the alerts show pan-assay promiscuity, and the alerts appear to encode primarily AlphaScreen promiscuous molecules. Although not enriching for pan-assay promiscuity, many of the alerts do encode molecules that are unstable, show cytotoxicity, and increase the prevalence of high Hill slopes.

9.
Chemistry ; 23(40): 9577-9584, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28326635

ABSTRACT

TLE1 is an oncogenic transcriptional co-repressor that exerts its repressive effects through binding of transcription factors. Inhibition of this protein-protein interaction represents a putative cancer target, but no small-molecule inhibitors have been published for this challenging interface. Herein, the structure-enabled design and synthesis of a constrained peptide inhibitor of TLE1 is reported. The design features the introduction of a four-carbon-atom linker into the peptide epitope found in many TLE1 binding partners. A concise synthetic route to a proof-of-concept peptide, cycFWRPW, has been developed. Biophysical testing by isothermal titration calorimetry and thermal shift assays showed that, although the constrained peptide bound potently, it had an approximately five-fold higher Kd than that of the unconstrained peptide. The co-crystal structure suggested that the reduced affinity was likely to be due to a small shift of one side chain, relative to the otherwise well-conserved conformation of the acyclic peptide. This work describes a constrained peptide inhibitor that may serve as the basis for improved inhibitors.


Subject(s)
Oligopeptides/chemical synthesis , Peptides, Cyclic/chemical synthesis , Repressor Proteins/antagonists & inhibitors , Amino Acid Sequence , Binding Sites , Co-Repressor Proteins , Humans , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Oligopeptides/chemistry , Peptides, Cyclic/chemistry , Protein Binding , Protein Conformation , Repressor Proteins/chemistry , Thermodynamics
10.
J Psychopharmacol ; 30(8): 826-30, 2016 08.
Article in English | MEDLINE | ID: mdl-27302942

ABSTRACT

Genome-wide association studies (GWAS) have identified thousands of novel genetic associations for complex genetic disorders, leading to the identification of potential pharmacological targets for novel drug development. In schizophrenia, 108 conservatively defined loci that meet genome-wide significance have been identified and hundreds of additional sub-threshold associations harbour information on the genetic aetiology of the disorder. In the present study, we used gene-set analysis based on the known binding targets of chemical compounds to identify the 'drug pathways' most strongly associated with schizophrenia-associated genes, with the aim of identifying potential drug repositioning opportunities and clues for novel treatment paradigms, especially in multi-target drug development. We compiled 9389 gene sets (2496 with unique gene content) and interrogated gene-based p-values from the PGC2-SCZ analysis. Although no single drug exceeded experiment wide significance (corrected p<0.05), highly ranked gene-sets reaching suggestive significance including the dopamine receptor antagonists metoclopramide and trifluoperazine and the tyrosine kinase inhibitor neratinib. This is a proof of principle analysis showing the potential utility of GWAS data of schizophrenia for the direct identification of candidate drugs and molecules that show polypharmacy.


Subject(s)
Antipsychotic Agents/pharmacology , Drug Design , Genetic Predisposition to Disease , Genome-Wide Association Study , Schizophrenia/genetics , Drug Repositioning/methods , Humans , Metoclopramide/pharmacology , Quinolines/pharmacology , Schizophrenia/drug therapy , Trifluoperazine/pharmacology
11.
ACS Med Chem Lett ; 7(2): 156-61, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26985291

ABSTRACT

Screening of the relatively new target class, the lysine and arginine methyltransferases (MTases), presents unique challenges in the identification and confirmation of active chemical matter. Examination of high throughput screening data generated using Scintillation Proximity Assay (SPA) format for a number of protein MTase targets reveals sensitivity to both the known pan assay interference compounds (PAINS) and also other scaffolds not currently precedented as assay interferers. We find that, in general, true actives show significant selectivity within the MTase family. With the exception of slight modifications of SAM-like compounds, scaffolds that are observed frequently in multiple MTase assays should be viewed with caution and should be carefully validated before following up.

12.
J Med Chem ; 58(5): 2553-9, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25719566

ABSTRACT

The bromodomain containing proteins BAZ2A/B play essential roles in chromatin remodeling and regulation of noncoding RNAs. We present the structure based discovery of a potent, selective, and cell active inhibitor 13 (BAZ2-ICR) of the BAZ2A/B bromodomains through rapid optimization of a weakly potent starting point. A key feature of the presented inhibitors is an intramolecular aromatic stacking interaction that efficiently occupies the shallow bromodomain pockets. 13 represents an excellent chemical probe for functional studies of the BAZ2 bromodomains in vitro and in vivo.


Subject(s)
Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Drug Design , Microsomes/drug effects , Molecular Probes/chemistry , Molecular Probes/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Animals , Mice , Models, Molecular , Molecular Structure , Structure-Activity Relationship
13.
J Med Chem ; 56(20): 8073-88, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24090311

ABSTRACT

Bromodomains (BRDs) are epigenetic readers that recognize acetylated-lysine (KAc) on proteins and are implicated in a number of diseases. We describe a virtual screening approach to identify BRD inhibitors. Key elements of this approach are the extensive design and use of substructure queries to compile a set of commercially available compounds featuring novel putative KAc mimetics and docking this set for final compound selection. We describe the validation of this approach by applying it to the first BRD of BRD4. The selection and testing of 143 compounds lead to the discovery of six novel hits, including four unprecedented KAc mimetics. We solved the crystal structure of four hits, determined their binding mode, and improved their potency through synthesis and the purchase of derivatives. This work provides a validated virtual screening approach that is applicable to other BRDs and describes novel KAc mimetics that can be further explored to design more potent inhibitors.


Subject(s)
Computational Biology/methods , Drug Discovery/methods , Nuclear Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Transcription Factors/antagonists & inhibitors , Cell Cycle Proteins , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Structure , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Binding , Protein Structure, Tertiary , Reproducibility of Results , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Structure-Activity Relationship , Transcription Factors/chemistry , Transcription Factors/metabolism
14.
J Med Chem ; 55(17): 7346-59, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22788793

ABSTRACT

Bromodomains are readers of the epigenetic code that specifically bind acetyl-lysine containing recognition sites on proteins. Recently the BET family of bromodomains has been demonstrated to be druggable through the discovery of potent inhibitors, sparking an interest in protein-protein interaction inhibitors that directly target gene transcription. Here, we assess the druggability of diverse members of the bromodomain family using SiteMap and show that there are significant differences in predicted druggability. Furthermore, we trace these differences in druggability back to unique amino acid signatures in the bromodomain acetyl-lysine binding sites. These signatures were then used to generate a new classification of the bromodomain family, visualized as a classification tree. This represents the first analysis of this type for the bromodomain family and can prove useful in the discovery of inhibitors, particularly for anticipating screening hit rates, identifying inhibitors that can be explored for lead hopping approaches, and selecting proteins for selectivity screening.


Subject(s)
Lysine/chemistry , Binding Sites , Lysine/analogs & derivatives , Models, Molecular , Molecular Structure , Proteins/chemistry
15.
Dalton Trans ; (32): 6283-5, 2009 Aug 28.
Article in English | MEDLINE | ID: mdl-19655058

ABSTRACT

Alkyne appended lanthanide complexes derived from DO3A undergo copper catalysed cycloaddition reactions with azides to form triazole appended complexes: coordination of one of the triazole nitrogen atoms to the metal centre changes the local coordination environment and the spectroscopic properties of the complex.

SELECTION OF CITATIONS
SEARCH DETAIL