Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Food Chem ; 437(Pt 1): 137774, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-37866343

ABSTRACT

This study examined the impact of two green extraction techniques in order to maximize the usage and recovery of phenolic compounds from the by-product of the filter tea industry, the so-called ginger herbal dust. The main phenolic compounds extraction was performed by ultrasound-assisted extraction (UAE) with the sonication amplitude ranging from 20% to 100%, and the subcritical water extraction (SWE), with the temperature ranging from 120 °C to 220 °C. All obtained extracts were characterized in terms of extraction yield, total phenolic content (TPC), and 6-ginerol, 6-shogaol, and 8-ginerol contents using RP-HPLC-DAD. Based on the results, we selected the extract obtained from raw ginger herbal dust using a sonication amplitude of 100% for further biological investigation of the cytotoxic effect on short- and long-term cell viability on liver and pancreatic cancer cells. This extract contained high TPC concentration, and 6-gingerol (44.57 mg/gDE), 8-gingerol (8.62 mg/gDE), and 6-shogaol (6.92 mg/gDE).


Subject(s)
Water , Zingiber officinale , Plant Extracts/pharmacology , Phenols/pharmacology
2.
Foods ; 12(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37835308

ABSTRACT

Rosehips are processed and consumed in numerous forms, such as juice, wine, herbal tea, yogurt, preserved fruit, and canned products. The seeds share in fruit is 30-35% and they have recently been recognized as an important source of oil rich in unsaturated fatty acids. However, after defatting, seed waste may still contain some polar polyphenolic compounds, which have been scarcely investigated. The aim of this study was to examine the potential of the defatted seed waste as a source of polyphenols. For the defatting process, supercritical carbon dioxide extraction at 300 bar and 40 °C was applied. The capacity of eight different natural deep eutectic solvents (NADES) for the recovery of phenolics from defatted rosehip seed powder (dRSP) was examined. In the extracts obtained with ultrasound-assisted NADES extraction, twenty-one phenolic compounds were identified with LC-MS/MS, among which the most abundant were quinic acid (22.43 × 103 µg/g dRSP) and catechin (571.93 µg/g dRSP). Ternary NADES formulations based on lactic acid proved to be superior. Potential correlations between identified chemical compounds, solvent polarity and viscosity, as well as the compound distributions across studied solvent combinations in PCA hyperspace, were also investigated. PCA demonstrated that more polar NADES mixtures showed improved extraction potential. The established environmentally friendly process represents an approach of transforming rosehip seed waste into value-added products with the potential to be applied in the food industry and to contribute to sustainable production.

3.
Foods ; 12(20)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37893761

ABSTRACT

The aim of this study was to develop, for the first time, anthocyanin-enriched fractions from black raspberry pomace (BRP) using ultrasound-assisted extraction (UAE) via sonotrode and the Particles from Gas-Saturated Solutions (PGSS) process. UAEs with different amplitudes and sonication times were evaluated and showed relevant effects on the yields of target analytes. The raspberry pomace extracts were formulated in a powder form by PGSS using glyceryl monostearate as a carrier at different extract-to-carrier ratios of 1:11, 1:5, and 1:3. The effects of all variables were evaluated in terms of extraction yield, total phenolic content, and encapsulation yield. UAE was strongly affected by amplitude, and the highest amplitude (100%) provided the best results for extraction yield and total phenolics. HPLC of UAE extracts and powders was utilized for quantification of polyphenol compounds, showing cyanidin-3-rutinoside as a main compound, followed by cyanidin-3-glucoside, rutin, ellagic acid, and gallic acid. These results show that these time-efficient and high-performance techniques enable the production of natural fractions from industrial BRP with acceptable characteristics to be used for the development of nutraceuticals and different food formulations.

4.
Molecules ; 28(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36903642

ABSTRACT

Microalgae are capable of assimilating nutrients from wastewater (WW), producing clean water and biomass rich in bioactive compounds that need to be recovered from inside the microalgal cell. This work investigated subcritical water (SW) extraction to collect high-value compounds from the microalga Tetradesmus obliquus after treating poultry WW. The treatment efficiency was evaluated in terms of total Kjeldahl nitrogen (TKN), phosphate, chemical oxygen demand (COD) and metals. T. obliquus was able to remove 77% TKN, 50% phosphate, 84% COD, and metals (48-89%) within legislation values. SW extraction was performed at 170 °C and 30 bar for 10 min. SW allowed the extraction of total phenols (1.073 mg GAE/mL extract) and total flavonoids (0.111 mg CAT/mL extract) with high antioxidant activity (IC50 value, 7.18 µg/mL). The microalga was shown to be a source of organic compounds of commercial value (e.g., squalene). Finally, the SW conditions allowed the removal of pathogens and metals in the extracts and residues to values in accordance with legislation, assuring their safety for feed or agriculture applications.


Subject(s)
Chlorophyceae , Microalgae , Animals , Wastewater , Biomass , Poultry , Water , Metals , Technology , Phosphates , Nitrogen
5.
Antibiotics (Basel) ; 11(11)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36358130

ABSTRACT

Having scarce information about ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE) of white horehound (Marrubium vulgare L.), the idea has emerged to determine the optimal process parameters for the maximization of polyphenols and to compare the efficiency of these green extraction technologies. The optimal UAE parameters are temperature of 73.6 °C, extraction time of 40 min and ultrasound power of 30.3 W/L, while the optimal MAE parameters are 63.8% ethanol, extraction time of 15 min and microwave power of 422 W. Extract obtained at optimal UAE parameters shows the highest antihyperglycemic activity (α-amylase inhibition: 50.63% and α-glucosidase inhibition: 48.67%), which can potentially be explained by the presence of chlorogenic acid and quercetin, which were not identified in the macerates. The most sensitive bacterial strain to optimal ultrasonic extract is Bacillus cereus, whereas the most sensitive fungal strain is Saccharomyces cerevisiae.

6.
Pharmaceutics ; 14(10)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36297452

ABSTRACT

Resveratrol is a well-studied plant-derived molecule in cancer biology, with a plethora of documented in vitro effects. However, its low bioavailability and toxicity risk hamper its wider use. In this study, vine shoots after pruning were used as a source of resveratrol (RSV). The activity of subcritical water extract (SWE) and dry extract (DE) is examined on three cell lines: HeLa, MCF-7 and MRC-5. The cytotoxic effect is assessed by the MTT test and EB/AO staining, levels of apoptosis are determined by Annexin V assay, autophagia by ULK-1 expression using Western blot and NF-kB activation by p65 ELISA. Our results show that both resveratrol-rich extracts (DE, SWE) have a preferential cytotoxic effect on malignant cell lines (HeLa, MCF-7), and low cytotoxicity on non-malignant cells in culture (MRC-5). Further experiments indicate that the investigated malignant cells undergo different cell death pathways. MCF-7 cells died preferentially by apoptosis, while the HeLa cells died most likely by necrosis (possibly ferroptosis). Protective autophagia is diminished upon treatment with DE in both HeLa and MCF-7 cells, while SWE does not influence the level of autophagia. The extracts are effective even at low concentrations (below IC50) in the activation of NF-kB (p65 translocation).

7.
Biology (Basel) ; 11(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36290369

ABSTRACT

To study the efficiency of two green-based extraction techniques for the isolation of bioactive constituents from black elderberry press cake, changes in phenolic compounds and main anthocyanin contents were analyzed. Polyphenolic content was correlated with antioxidant and antidiabetic potential by radical-scavenging activity and monitoring of α-amylase inhibition. Black elderberry press-cake extracts were obtained by ultrasound-assisted (UAE) and microwave-assisted (MAE) extractions under different extraction conditions. High-performance liquid chromatography (HPLC) analysis revealed that cyanidin-3-sambubioside and cyanidin-3-glucoside were the principal anthocyanins in all the obtained extracts, with their content being highest in MAE obtained at 80 °C over 5 min. The same extract induced two-fold higher antioxidant activity (IC50 6.89 µg/mL) and α-amylase inhibitory potential (IC50 2.18 mg/mL) in comparison to UAE extracts. The main compositional differences between extracts obtained by the same extraction technique were assigned to the extraction temperature. A principal component analysis confirmed that the antidiabetic feature is to be attributed to the rich content of anthocyanins in black elderberry press cake. Our results indicate the great potential of underutilized black elderberry press cake for the development of novel food and herbal formulations due to notable anthocyanin contents highly correlated with antidiabetic activity.

8.
Microorganisms ; 10(7)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35889077

ABSTRACT

The antimicrobial activity of Allium ursinum aqueous extract prepared using high pressure extraction was evaluated. Minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of A. ursinum extract for six bacterial pathogens were determined using the broth macrodilution method. Although the A. ursinum extract was shown to be effective toward all investigated foodborne bacteria, its antimicrobial activity depended on its concentration and bacterial strain. Listeria monocytogenes was the most sensitive to antimicrobial activity of A. ursinum extract among all tested pathogens. Accordingly, the lowest MIC and MBC of A. ursinum extract were determined for L. monocytogenes (28 and 29 mg/mL). The tested extract showed a similar antimicrobial potential to other examined bacterial strains (Salmonella Enteritidis, Proteus hauseri, Enterococcus faecalis and two strains of Escherichia coli) with MIC and MBC values at concentrations of 29 and 30 mg/mL, respectively. The dependence of the antimicrobial activity of the A. ursinum extract on the level of contamination of tested pathogens was also observed. The increase in the contamination level caused an intense reduction in antibacterial potential of the A. ursinum extract. The composition of the A. ursinum extract was analyzed and found to be a good source of polyphenols and sulfur compounds. However, considering the applied extraction method and the HPLC analysis of bioactive compounds, the antimicrobial potential may be attributed more to polyphenol content. The obtained results that the extracts have shown toward food pathogens open the possibility of using the tested extracts as natural additives in a variety of food products.

9.
Chem Biodivers ; 19(3): e202100954, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35170197

ABSTRACT

The most abundant volatile compounds of sweet wormwood (Artemisia annua L.) essential oil were artemisia ketone (25.4 %) and trans-caryophyllene (10.2 %), followed by 1,8-cineole, camphor, germacrene D and ß-selinene. The major volatile compounds in the hydrosol were camphor (25.1 %), 1,8-cineole (20.5 %) and artemisia ketone (10.7 %), followed by trans-pinocarveol and yomogi alcohol. Tested essential oil was rich in oxygenated monoterpenes and sesquiterpene hydrocarbons, while the former were identified as the major class of volatile compounds in the hydrosol, due to higher water solubility. Classification of all sweet wormwood chemotypes, according to essential oil composition, in available literature (17 studies and 61 accessions) could be done according to four chemotypes: artemisia ketone+artemisia alcohol (most abundant), artemisia ketone, camphor and nonspecific chemotype. According to this classification, essential oil of sweet wormwood from this study belongs to artemisia ketone (content varied between 22.1 and 55.8 %). Bearing in mind that hydrosols are a by-product of industrial production of essential oils, and the fact that sweet wormwood hydrosol has high contents of camphor, 1,8-cineole and artemisia ketone, there is a great potential for the use of this aromatic plant primary processing waste product as a water replacement in cosmetic industry, beverages flavoring, for food preservation, as well as in post-harvest pre-storage treatments in organic agriculture.


Subject(s)
Artemisia annua , Artemisia , Oils, Volatile , Camphor , Eucalyptol , Serbia
10.
Food Technol Biotechnol ; 60(4): 543-555, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36816878

ABSTRACT

Research background: By tailoring dietary fibre's structural and physicochemical properties, their functionality and applicability can be remarkably increased. One of the approaches used in this respect is fibre particle size reduction. Accordingly, the present study explores the impact of short-time micronization in a planetary ball mill on structural and thermal changes of modified and commercial sugar beet fibre, inulin and sucrose for their potential application as food excipients. Experimental approach: Short-time micronization in a planetary ball mill (30 and 60 min) was applied for particle size reduction of modified and commercial sugar beet fibre, inulin and sucrose as less energy-consumptive and less destructive approach than long-time micronization. Dietary fibre and sucrose samples were characterised in terms of particle size, morphology, intermolecular bonds and presence of functional groups, crystallinity and thermal properties, before and after the short-time micronization. Results and conclusions: Particle size was successfully reduced to micron-scale already after 30 min of micronization in most of the samples without significant changes in thermal properties and crystallinity or present functional groups. An enhanced particle size decrease with prolonged micronization time (60 min) was noticed in modified sugar beet fibre with slightly wider particle size distribution than in other examined samples. Furthermore, morphology and exposure of the present functional groups in samples were altered by the micronization, which is favourable for their further application as excipients in the food matrix. Novelty and scientific contribution: The corresponding research reports the short-time micronization impact on sugar beet fibre and modified sugar beet fibre, inulin and sucrose for the first time, hence contributing to the widening of their application as excipients in diverse products.

11.
Foods ; 10(9)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34574078

ABSTRACT

This study aimed to establish a procedure for pomegranate peel (PP) valorization and attainment of stable extracts with preserved bioactive compounds. The technology applied was spray drying with carbohydrate-based (maltodextrin, MD) and protein-based (whey protein, WP) carrier materials in different concentrations (80, 100, and 120%). What was analyzed was the impact of the type and concentration of carrier material on the stability and quality of the final encapsulated powder. The best results were achieved when the PP extract was microencapsulated with the carbohydrate-based carrier (100%), where it had the highest encapsulation efficiency (EE) (88.63%), hygroscopicity (15.17%), and water solubility index (87.04%). The moisture content was in the range of 3.69-4.60% and 4.21-5.84% for MD and WP, respectively, indicating that both are suitable for long-term storage. It was observed that changes in carrier concentration significantly influenced most of the powders' physicochemical properties. Microencapsulation using MD yielded a higher content of punicalin, punicalagin, gallic, and ellagic acid than those with WP. Overall results demonstrated that carbohydrate-based microencapsulation can be utilized efficiently for the protection of powder stability and phytochemical characteristics.

12.
Chem Biodivers ; 18(4): e2100058, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33660411

ABSTRACT

The aim of this study was to extract Allium ursinum L. for the first time by supercritical carbon dioxide (SC-CO2 ) as green sustainable method. The impact of temperature in the range from 40 to 60 °C and pressure between 150 and 400 bar on the quality of the obtained extracts and efficiency of the extraction was investigated. The highest extraction yield (3.43 %) was achieved by applying the extraction conditions of 400 bar and 60 °C. The analysis of the extracts was performed by gas chromatography and mass spectrometry (GC/MS). The most dominant sulfur-containing constituent of the extracts was allyl methyl trisulfide with the highest abundance at 350 bar and 50 °C. In addition, the presence of other pharmacologically potent sulfur compounds was recorded including S-methyl methanethiosulfinate, diallyl trisulfide, S-methyl methylthiosulfonate, and dimethyl trisulfide. Multivariate data analysis tool was utilized to investigate distributions of the identified compounds among the extracts obtained under various extraction conditions and yields. It was determined that the SC-CO2 extraction can by efficiently used for A. ursinum.


Subject(s)
Allium/chemistry , Carbon Dioxide/chemistry , Plant Extracts/isolation & purification , Sulfur Compounds/isolation & purification , Temperature , Gas Chromatography-Mass Spectrometry , Multivariate Analysis , Plant Extracts/chemistry , Pressure , Sulfur Compounds/chemistry
13.
RSC Adv ; 11(16): 9067-9075, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-35423440

ABSTRACT

Supercritical carbon dioxide and Soxhlet extraction were employed for delivering Marrubium vulgare extracts. By varying process temperature and pressure, the impact of different densities of carbon dioxide on the extraction yield and chemical profile of the extracts was investigated. The highest extraction yields of M. vulgare were obtained by supercritical carbon dioxide extraction (3.51%) at 300 bar and 60 °C, while the yield obtained with the Soxhlet extraction was 3.23%. The chemical profiles of these two extracts were significantly different and marrubiin, the most dominant component of supercritical extracts was not present in extracts obtained by this conventional method. This labdane diterpene was the most abundant in extracts obtained at 200 bar and temperatures of 40, 50, and 60 °C (62.60, 68.41, and 71.96%, respectively). For the intensification of marrubiin, supercritical fractions were collected in successive time intervals over the course of the extraction (300 bar/60 °C). It was determined that after 1 h of extraction the highest content of marrubiin (75.14%) can be achieved. The similarities between the obtained extracts were estimated and the correlations to the content of identified lipophilic compounds were established using multivariate data analysis tools.

14.
Plants (Basel) ; 9(11)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182763

ABSTRACT

Satureja montana herbal species belongs to aromatic medicinal plants with a significant place in traditional medicine. However, products produced with conventional procedures do not meet the requirements of the modern market which include environmentally-safe processes that provide quality, safe, and standardized products. In this study, the antiproliferative activity of S. montana extracts obtained by supercritical carbon dioxide and solid-liquid extraction followed by spray drying was investigated using the in vivo model of Ehrlich ascites carcinoma (EAC) in mice. The impact of two concentrations of extracts on the growth of tumor and the redox status of malignant cells was monitored. It was determined that the extracts induced oxidative stress in the malignant cells which was confirmed by the changes in activity of biochemical indicators of oxidative stress. The posttreatment was not an efficient approach, while the extracts applied as pretreatment and treatment resulted in an increase in the xanthine oxidase (XOD) activity, a decrease in catalase (CAT) activity, and an increase in the intensity of lipid peroxidation (LPx). Furthermore, a decrease in the values of reduced glutathione (GSH) and an increase in glutathione reductase (GR) and glutathione peroxidase (GSHPx) in EAC cells were recorded.

15.
Plant Foods Hum Nutr ; 75(4): 553-560, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32816146

ABSTRACT

Two environmentally friendly innovative extraction techniques - subcritical water (SWE) and microwave-assisted extraction (MAE) were applied for the extraction of phenolics from pomegranate peel. The impact of process conditions (SWE: temperature 100-220 °C, extraction time 5-30 min; MAE: solvent water and 50% ethanol, irradiation power 470 and 800 W) on the quality of extracts in terms of the content of total phenolics, total flavonoids, major phenolic constituents (gallic acid, ellagic acid, punicalin, punicalagin), as well as 5-hydroxymethylfurfural(HMF) amount was investigated. For SWE, temperature of 130 °C and 20 min extraction time were found optimal for obtaining high content of bioactive compounds and minimizing the yield of HMF. During MAE, phenolic compounds were effectively extracted by using lower microwave power and 50% ethanol. Comparing two techniques, MAE is more efficient than SWE for the extraction of phenolics from pomegranate peel while obtaining a HMF-free extracts.


Subject(s)
Microwaves , Water , Furaldehyde/analogs & derivatives , Plant Extracts , Pomegranate
16.
Molecules ; 25(8)2020 Apr 18.
Article in English | MEDLINE | ID: mdl-32325741

ABSTRACT

In the present study, valorization of yarrow (Achillea millefolium) by-product from the filter tea industry was investigated through the application of subcritical water for the extraction of bioactive compounds. The influence of different process parameters (temperature 120-200 °C, extraction time 10-30 min, and HCl concentration in extraction solvent 0-1.5%) on extract quality in terms of content of bioactive compounds and antioxidant activity was investigated. Optimal conditions of the extraction process (temperature 198 °C, extraction time 16.5 min, and without acidifer) were determined and, when applied, the most efficient exploitation of by-products is achieved, that is, attainment of extracts rich in total phenols and flavonoids and high antioxidant activity. In addition, by applying the high performance liquid chromatographic analysis, the content of chlorogenic acid was determined as well as the hydroxymethylfurfural content in obtained extracts. The results demonstrated that subcritical water can be successfully used for utilization of yarrow by-products for obtaining extracts rich in antioxidants.


Subject(s)
Achillea/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Analysis of Variance , Antioxidants/chemistry , Antioxidants/pharmacology , Chromatography, High Pressure Liquid , Flavonoids/chemistry , Liquid-Liquid Extraction , Phenols/chemistry , Plant Extracts/isolation & purification
17.
Plants (Basel) ; 9(2)2020 Jan 26.
Article in English | MEDLINE | ID: mdl-31991848

ABSTRACT

Satureja montana L. was used in the current research as the plant exhibits numerous health-promoting benefits due to its specific chemical composition. The extraction method based on deep eutectic solvents (DESs) was used for the extraction of rutin and rosmarinic acid from this plant. Five different choline chloride-based DESs with different volumes of water (10%, 30%, and 50% (v/v)) were used for the extraction at different temperatures (30, 50, and 70 °C) to investigate the influence on rosmarinic acid and rutin content obtained by high-performance liquid chromatography with diode-array detector (HPLC-DAD) in the obtained extracts. A principal component analysis was employed to explore and visualize the influence of applied parameters on the efficiency of the extraction procedure of rutin and rosmarinic acid. Among the tested DESs, choline chloride:lactic acid (mole ratio 1:2) and choline chloride:levulinic acid (mole ratio 1:2) were the most suitable for the extraction of rutin, while for rosmarinic acid choline chloride:urea (mole ratio 1:2) was the most effective solvent. The extract showing the best antiradical activity was obtained with choline chloride:urea (mole ratio 1:1) at 30 °C and 50% H2O (v/v).

18.
Pharmaceutics ; 11(10)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614551

ABSTRACT

White horehound (Marrubium vulgare L.), is a grey-leaved perennial herb, belonging to Lamiaceae family, distributed in Eurasia and northern Africa. Despite the fact that M. vulgare has been used since ancient times in treating diverse diseases, it is only in the last decade or so that scientists have been able to lay the foundation for its potential pharmacological actions from the results observed through the prism of ethnopharmacological use of this species. The novelty of this study was that subcritical water extraction, acknowledged as a powerful extraction technology to recover phenolic compounds, was coupled with spray drying. The subcritical horehound extract, obtained using optimal process parameters, was used as a liquid feed in spray drying. Maltodextrin was used as a carrier in a concentration of 10%. Thus, two M. vulgare powders, carrier-free and 10% MD, were produced. Comprehensive powders characterization was conducted in order to evaluate their quality. Results confirmed that spray drying can be used as a method of choice for obtaining high quality horehound powders which kept the amorphous structure constant after 6 months.

19.
Foods ; 8(8)2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31390766

ABSTRACT

The study describes and compares bio-functional properties and thein vitrodigestibility of protein isolates from apricot oil cakes obtained by supercritical fluid extraction and cold pressing, as control. Protein isolates have the potential to be food ingredients with amygdalin contents in an amount considerably lower than regulatory. Isolates showed hypoglycemic activity, studied by the inhibition of α-glucosidase, also functional properties were determined.Good digestibility of proteins, which were done using gastrointestinal proteases (pepsin and pancreatin) were proven by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis SDS-PAGE analysis. Moreover, it was evident that the protein isolates were completely digested. The biologically active potential of the digests was evaluated measuring in vitro antioxidant capacity by three complementary methods and enzyme inhibitory effects towards Angiotensin-I Converting Enzyme (ACE) related with the onset of hypertension. All hydrolysates act as a DPPH and ABTS scavenger, as a reducing agents and an ACE enzyme inhibitor. In conclusion, protein isolates obtained from apricot kernel cake showed to be a promising source of natural products for food applications, with good functional and bioactive properties and easy digestibility.

20.
Acta Chim Slov ; 66(2): 473-483, 2019 Jun.
Article in English | MEDLINE | ID: mdl-33855513

ABSTRACT

In the present study, subcritical water was used for extraction of bioactive compounds of Symphytum officinale root. Temperature (120-200 °C), extraction time (10-30 min) and HCl concentration in extraction solvent (0-1.5%) were investigated as independent variables in order to obtain the optimal conditions for extraction and to maximize the yield of total phenols, flavonoids and antioxidant activity of obtained extracts. The application of optimal conditions (200 °C, 25.6 min and 0.0075%) provided extracts rich in total phenols and flavonoids and high antioxidant activity. Results also demonstrated that subcritical water extraction showed significant advantages for recovery of comfrey root bioactive compounds comparing to maceration and ultrasound-assisted extraction techniques. In addition, subcritical water extracts of S. officinale root are the promising sources of compounds with antioxidant, ACE inhibition, and antiproliferative properties and could potentially be used for production of new pharmacologically-active formulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...