Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35337178

ABSTRACT

The combination of metformin and TKIs for non-small cell lung cancer has been proposed as a strategy to overcome resistance of neoplastic cells induced by several molecular mechanisms. This study sought to investigate the effects of a second generation TKI afatinib, metformin, or their combination on three adenocarcinoma lung cancer cell lines with different EGFRmutation status. A549, H1975, and HCC827 cell lines were treated with afatinib, metformin, and their combination for 72 h. Afterwards, several parameters were assessed including cytotoxicity, interactions, apoptosis, and EGFR protein levels at the cell membrane and several glycolytic, oxidative phosphorylation (OXPHOS), and EMT expression markers. All cell lines showed additive to synergic interactions for the induction of cytotoxicity caused by the tested combination, as well as an improved pro-apoptotic effect. This effect was accompanied by downregulation of glycolytic, EMT markers, a significant decrease in glucose uptake, extracellular lactate, and a tendency towards increased OXPHOS subunits expression. Interestingly, we observed a better response to the combined therapy in lung cancer cell lines A549 and H1975, which normally have low affinity for TKI treatment. Findings from this study suggest a sensitization to afatinib therapy by metformin in TKI-resistant lung cancer cells, as well as a reduction in cellular glycolytic phenotype.

2.
Horm Cancer ; 11(3-4): 170-181, 2020 08.
Article in English | MEDLINE | ID: mdl-32557212

ABSTRACT

The development of breast cancer (BC) is influenced by age, overweight, obesity, metabolic syndrome, and diabetes mellitus (DM), which are associated with hyperglycemia, glucose intolerance, insulin resistance, and oxidative stress. High glucose concentration increases a metastatic phenotype in cultured breast cancer cells, promoting cell proliferation, reactive species production (ROS), epithelial mesenchymal transition (EMT), and expression of proteolytic enzymes. Our aim was to determine whether diabetes mellitus favor BC progression in mice and its association with changes in the content of ROS and glycolytic and proteolytic enzymes. Diabetes was induced in 7-week-old Balb/c mice, under 6-h fasting with a unique i. p. dose of streptozotocin 120 mg/kg. Furthermore, 4T1 breast cancer cells were injected beneath the nipple to induce tumors. G6PD, GAPDH, ENO1, uPA, uPAR, PAI-1, ß-catenin, Snail, vimentin, and E-cadherin were measured by western blot and MPP-9 and MMP-2 by gel zymography. TBARS were measured as markers of the lipid peroxidation. Lower survival and increased tumor growth, together with marked EMT, were found in diabetic in comparison with nondiabetic mice. The effects of diabetes were associated with enhanced lipid peroxidation and higher levels of glycolytic (G6PD, GAPDH, and ENO1) and proteolytic (uPA, MMP-9) enzymes. Possibly, hyperglycemia and ROS led to faster progression of breast cancer in diabetic mice, fomenting EMT and the expression of glycolytic and proteolytic enzymes. These enzymes participate in the supply of energy and precursors for macromolecular biosynthesis and extracellular matrix degradation during breast cancer progression.


Subject(s)
Breast Neoplasms/genetics , Diabetes Mellitus, Experimental/genetics , Peptide Hydrolases/metabolism , Animals , Disease Progression , Epithelial-Mesenchymal Transition , Female , Humans , Mice
3.
Cir Cir ; 88(2): 163-169, 2020.
Article in English | MEDLINE | ID: mdl-32116328

ABSTRACT

OBJECTIVE: The objective of the study was to determine the expression levels of BIK in breast cancer (BC) tissues of different histological subtype and to delve into the participation of BIK in this type of cancer. MATERIALS AND METHODS: BIK and p-BIK (the phosphorylated form) protein expressions were tested by immunohistochemistry in BC tissue microarrays (Tumoral [n = 90] and adjacent [n = 40] tissues). RESULTS: The data revealed an overexpression of BIK in invasive ductal (Grades I, IIA, and IIB) and in lobular (Grades IIA and IIB) carcinomas compared to their respective adjacent tissues. By contrast, canalicular carcinoma (Grades I and IIB) and phyllodes tumors had very low expression levels of BIK. Only levels of p-BIK were shown to be increased in invasive ductal carcinoma (Grades I, IIA, and IIB). Meanwhile, quantitative polymerase chain reaction analysis showed lower BIK levels in MCF-10A and MCF-7 cells than in MDA-MB-231 and human mammary epithelial cells. In agreement with this, BIK protein was shown to be overexpressed in MDA-MB 231 relative to MCF-7 cells. CONCLUSIONS: Our results showed an association between BIK expression and the BC tumor subtype under study, which could be related to different BIK functions in the BC subtypes.


OBJETIVO: Determinar el grado de expresión de BIK en tejidos de cáncer de mama de diferente subtipo histológico para ahondar en la participación de BIK en este tipo de cancer. MÉTODO: Por medio de inmunohistoquímica se determinó la expresión de BIK y de su forma fosforilada (p-BIK) en microarreglos de tejidos (tumores [n = 90] y tejidos adyacentes [n = 40]) y líneas celulares. RESULTADOS: Los datos mostraron una sobreexpresión de BIK en los carcinomas de tipo ductal invasivo (grados I, IIA y IIB) y lobular (grados IIA y IIB) con respecto a sus tejidos adyacentes respectivos. En contraste, el carcinoma canalicular (grados I y IIB) y los tumores filoides mostraron una baja expresión de BIK en relación con sus tejidos adyacentes respectivos. El análisis de la qPCR mostró una menor expresión de BIK en las células MCF-10A y MCF-7 en comparación con las células MDA-MB-231 y HMEC. En concordancia con esto, la expresión proteica de BIK fue mayor en las células MDA-MB 231 que en las células MCF-7. CONCLUSIÓN: Nuestros resultados mostraron una asociación entre la expresión de BIK y el subtipo tumoral en estudio, lo cual sugiere una función diferencial de BIK en el cáncer de mama.


Subject(s)
Apoptosis Regulatory Proteins/biosynthesis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Ductal, Breast/pathology , Carcinoma, Lobular/metabolism , Carcinoma, Lobular/pathology , Mitochondrial Proteins/biosynthesis , Breast Neoplasms/classification , Carcinoma, Ductal, Breast/classification , Carcinoma, Lobular/classification , Female , Humans , Middle Aged , Neoplasm Grading
4.
Mol Cell Biochem ; 437(1-2): 65-80, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28612231

ABSTRACT

Obesity and type II diabetes mellitus have contributed to the increase of breast cancer incidence worldwide. High glucose concentration promotes the proliferation of metastatic cells, favoring the activation of the plasminogen/plasmin system, thus contributing to tumor progression. The efficient formation of plasmin is dependent on the binding of plasminogen to the cell surface. We studied the effect of ε-aminocaproic acid (EACA), an inhibitor of the binding of plasminogen to cell surface, on proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and plasminogen activation system, in metastatic MDA-MB-231 breast cancer cells grown in a high glucose microenvironment and treated with insulin. MDA-MB-231 cells were treated with EACA 12.5 mmol/L under high glucose 30 mmol/L (HG) and high glucose and insulin 80 nmol/L (HG-I) conditions, evaluating: cell population growth, % of viability, migratory, and invasive abilities, as well as the expression of uPA, its receptor (uPAR), and its inhibitor (PAI-1), by real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, MMP-2 and MMP-9 mRNAs were evaluated by RT-PCR. Markers of EMT were evaluated by Western blot. Additionally, the presence of active uPA was studied by gel zymography, using casein-plasminogen as substrates. EACA prevented the increase in cell population, migration and invasion induced by HG and insulin, which was associated with the inhibition of EMT and the attenuation of HG- and insulin-dependent expression of uPA, uPAR, PAI-1, MMP-2, MMP-9, α-enolase (ENO A), and HCAM. The interaction of plasminogen to the cell surface and plasmin formation are mediators of the prometastasic action of hyperglycemia and insulin, potentially, EACA can be employed in the prevention and as adjuvant treatment of breast tumorigenesis promoted by hyperglycemia and insulin.


Subject(s)
Aminocaproic Acid/pharmacology , Breast Neoplasms/metabolism , Glucose/pharmacology , Insulin/pharmacology , Neoplasm Proteins , Plasminogen , Breast Neoplasms/pathology , Cell Line, Tumor , Epithelial-Mesenchymal Transition/drug effects , Female , Humans , Neoplasm Invasiveness , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Plasminogen/antagonists & inhibitors , Plasminogen/metabolism
5.
Mol Neurobiol ; 54(8): 6598-6608, 2017 10.
Article in English | MEDLINE | ID: mdl-27738870

ABSTRACT

Expression changes for long non-coding RNAs (lncRNAs) have been identified in adult glioblastoma multiforme (GBM) and in a mixture of adult and pediatric astrocytoma. Since adult and pediatric astrocytomas are molecularly different, the mixture of both could mask specific features in each. We determined the global expression patterns of lncRNAs and messenger RNA (mRNAs) in pediatric astrocytoma of different histological grades. Transcript expression changes were determined with an HTA 2.0 array. lncRNA interactions with microRNAs and mRNAs were predicted by using an algorithm and the LncTar tool, respectively. Interactomes were constructed with the HIPPIE database and visualized with the Cytoscape platform. The array showed expression changes in 156 and 207 lncRNAs in tumors (versus the control) and in pediatric GBM (versus low-grade astrocytoma), respectively. Predictions identified lncRNAs that have putative microRNA binding sites, which might suggest that they function as sponges in these tumors. Also, lncRNAs were shown to interact with many mRNAs, such as Pleckstrin homology-like domain, family A, member 1 (PHLDA1) and sulfatase 2 (SULF2). For example, qPCR found long intergenic non-coding RNA regulator of reprogramming (linc-RoR) expression levels upregulated in pediatric GBM when they were compared with control tissues or with low-grade tumors. Meanwhile, PHLDA1 and ELAV-like RNA binding protein 1 (ELAV1) showed expression changes in tumors relative to the control. Our data showed many lncRNAs with expression changes in pediatric astrocytoma, which might be involved in the regulation of different signaling pathways.


Subject(s)
Astrocytoma/metabolism , Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/metabolism , Signal Transduction/physiology , Adolescent , Astrocytoma/genetics , Brain Neoplasms/genetics , Child , Child, Preschool , Female , Gene Expression Profiling , Humans , Infant , Male , RNA, Long Noncoding/genetics
6.
Cell Oncol (Dordr) ; 39(4): 365-78, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27106722

ABSTRACT

BACKGROUND: Accumulating evidence indicates that type 2 diabetes is associated with an increased risk to develop breast cancer. This risk has been attributed to hyperglycemia, hyperinsulinemia and chronic inflammation. As yet, however, the mechanisms underlying this association are poorly understood. Here, we studied the effect of high glucose and insulin on breast cancer-derived cell proliferation, migration, epithelial-mesenchymal transition (EMT) and invasiveness, as well as its relationship to reactive oxygen species (ROS) production and the plasminogen activation system. METHODS: MDA-MB-231 cell proliferation, migration and invasion were assessed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), scratch-wound and matrigel transwell assays, respectively. ROS production was determined using 2' 7'-dichlorodihydrofluorescein diacetate. The expression of E-cadherin, vimentin, fibronectin, urokinase plasminogen activator (uPA), its receptor (uPAR) and its inhibitor (PAI-1) were assessed using qRT-PCR and/or Western blotting assays, respectively. uPA activity was determined using gel zymography. RESULTS: We found that high glucose stimulated MDA-MB-231 cell proliferation, migration and invasion, together with an increased expression of mesenchymal markers (i.e., vimentin and fibronectin). These effects were further enhanced by the simultaneous administration of insulin. In both cases, the invasion and growth responses were found to be associated with an increased expression of uPA, uPAR and PAI-1, as well as an increase in active uPA. An osmolality effect of high glucose was excluded by using mannitol at an equimolar concentration. We also found that all changes induced by high glucose and insulin were attenuated by the anti-oxidant N-acetylcysteine (NAC) and, thus, depended on ROS production. CONCLUSIONS: From our data we conclude that hyperglycemia and hyperinsulinemia can promote breast cancer cell proliferation, migration and invasion. We found that these features were associated with increased expression of the mesenchymal markers vimentin and fibronectin, as well as increased uPA expression and activation through a mechanism mediated by ROS.


Subject(s)
Breast Neoplasms/pathology , Glucose/pharmacology , Insulin/pharmacology , Neoplasm Invasiveness/pathology , Reactive Oxygen Species/metabolism , Urokinase-Type Plasminogen Activator/biosynthesis , Blotting, Western , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/physiology , Female , Humans , Hyperglycemia/physiopathology , Hyperinsulinism/physiopathology , Neoplasm Invasiveness/physiopathology , Polymerase Chain Reaction
7.
Tumour Biol ; 37(5): 6749-59, 2016 May.
Article in English | MEDLINE | ID: mdl-26662110

ABSTRACT

B-cell lymphoma 2 (BCL2)-interacting killer (apoptosis inducing) (BIK) has been proposed as a tumor suppressor in diverse types of cancers. However, BIK's overexpression in breast cancer (BC) and in non-small lung cancer cells (NSCLCs), associated with a poor prognosis, suggests its participation in tumor progression. In this study, we evaluated the global expression pattern of microRNAs (miRNAs), messenger RNA (mRNA) expression changes in autophagy, and autophagic flux after BIK interference. BIK gene expression was silenced by small interfering RNA (siRNA) in BC cell MDA-MB-231, and BIK interference efficiency was tested by real-time PCR and by Western blotting. BIK expression levels decreased by 75 ± 18 % in the presence of 600 nM siRNA, resulting in the abolishment of BIK expression by 94 ± 30 %. BIK interference resulted in the overexpression of 17 miRNAs that, according to the DIANA-miRPath v3.0 database, are mainly implied in the control of cell signaling, gene expression, and autophagy. The autophagy array revealed downregulation of transcripts which participate in autophagy, and their interactome revealed a complex network, where hepatocyte growth factor-regulated tyrosine kinase substrate (HGS), α-synuclein (SNCA), unc-51-like autophagy activating kinase 1/2 (ULK1/2), and mitogen-activated protein kinase 3 (MAPK3) were shown to be signaling hubs. LC3-II expression-an autophagy marker-was increased by 169 ± 25 % after BIK interference, which indicates the involvement of BIK in autophagy. Altogether, our results indicate-for the first time-that BIK controls the expression of miRNAs, as well as the autophagic flux in MDA-MB-231 cells.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Membrane Proteins/genetics , MicroRNAs/genetics , RNA Interference , Transcriptome , Autophagy/genetics , Cell Line, Tumor , Cluster Analysis , Computational Biology/methods , Female , Gene Expression Profiling , Gene Regulatory Networks , Humans , Mitochondrial Proteins , RNA, Messenger/genetics
8.
Oncol Rep ; 34(3): 1106-14, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26133558

ABSTRACT

For early detection of cancer, education and screening are important, but the most critical factor is the development of early diagnostic tools. Methods that recognize the warning signs of cancer and take prompt action lead to an early diagnosis; simple tests can identify individuals in a healthy population who have the disease but have not developed symptoms. Early detection of cancer is significant and is one of the most promising approaches by which to reduce the growing cancer burden and guide curative treatment. The early diagnosis of patients with breast cancer is challenging, since it is the most common cancer in women worldwide. Despite the advent of mammography in screening for breast cancer, low-resource, low-cost alternative tools must be implemented to complement mammography findings. IgM is part of the first line of defense of an organism and is responsible for recognizing and eliminating infectious particles and removing transformed cells. Most studies on breast cancer have focused on the development of IgG-like molecules as biomarkers or as a treatment for the advanced stages of cancer, but autoantibodies (IgM) and tumor-associated antigens (proteins or carbohydrates with aberrant structures) have not been examined as early diagnostic tools for breast cancer. The present review summarizes the function of natural and adaptive IgM in eliminating cancer cells in the early stages of pathology and their value as early diagnostic tools. IgM, as a component of the immune system, is being used to identify tumor-associated antigens and tumor-associated carbohydrate antigens.


Subject(s)
Antibodies, Neoplasm/immunology , Antigens, Neoplasm/immunology , Biomarkers, Tumor/immunology , Breast Neoplasms/immunology , Immunoglobulin M/immunology , Autoantibodies/immunology , Early Detection of Cancer/methods , Female , Humans
9.
Tumour Biol ; 36(9): 6991-7005, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25861752

ABSTRACT

Majority of women with estrogen receptor (ER)-positive breast cancers initially respond to hormone therapies such as tamoxifen (TAM; antagonist of estrogen). However, many tumors eventually become resistant to TAM. Therefore, understanding the various cellular components involved in causing resistance to TAM is of paramount importance in designing novel entities for efficacious hormone therapy. Previously, we found that suppression of BIK gene expression induced TAM resistance in MCF-7 breast cancer cells. In order to understand the response of these cells to TAM and its association with resistance, a microarray analysis of gene expression was performed in the BIK-suppressed MCF-7 cells and compared it to the TAM-only-treated cells (controls). Several genes participating in various cellular pathways were identified. Molecules identified in the drug resistance pathway were 14-3-3z or YWHAZ, WEE1, PRKACA, NADK, and HSP90AA 1. Further, genes involved in cell cycle control, apoptosis, and cell proliferation were also found differentially expressed in these cells. Transcriptional and translational analysis of key molecules such as STAT2, AKT 3, and 14-3-3z revealed similar changes at the messenger RNA (mRNA) as well as at the protein level. Importantly, there was no cytotoxic effect of TAM on BIK-suppressed MCF-7 cells. Further, these cells were not arrested at the G0-G1 phase of the cell cycle although 30 % of BIK-suppressed cells were arrested at the G2 phase of the cycle on TAM treatment. Furthermore, we found a relevant interaction between 14-3-3z and WEE1, suggesting that the cytotoxic effect of TAM was prevented in BIK-suppressed cells because this interaction leads to transitory arrest in the G2 phase leading to the repair of damaged DNA and allowing the cells to proliferate.


Subject(s)
14-3-3 Proteins/genetics , Apoptosis Regulatory Proteins/biosynthesis , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Membrane Proteins/biosynthesis , Tamoxifen/administration & dosage , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Estrogens/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Membrane Proteins/genetics , Metabolic Networks and Pathways/drug effects , Mitochondrial Proteins , Neoplasm Proteins/biosynthesis
10.
Oncol Rep ; 32(1): 3-15, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24841429

ABSTRACT

Anti-estrogens such as tamoxifen are widely used in the clinic to treat estrogen receptor-positive breast tumors. Patients with estrogen receptor-positive breast cancer initially respond to treatment with anti-hormonal agents such as tamoxifen, but remissions are often followed by the acquisition of resistance and, ultimately, disease relapse. The development of a rationale for the effective treatment of tamoxifen-resistant breast cancer requires an understanding of the complex signal transduction mechanisms. In the present study, we explored some mechanisms associated with resistance to tamoxifen, such as pharmacologic mechanisms, loss or modification in estrogen receptor expression, alterations in co-regulatory proteins and the regulation of the different signaling pathways that participate in different cellular processes such as survival, proliferation, stress, cell cycle, inhibition of apoptosis regulated by the Bcl-2 family, autophagy, altered expression of microRNA, and signaling pathways that regulate the epithelial-mesenchymal transition in the tumor microenvironment. Delineation of the molecular mechanisms underlying the development of resistance may aid in the development of treatment strategies to enhance response and compromise resistance.


Subject(s)
Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Estrogen Antagonists/therapeutic use , Tamoxifen/therapeutic use , Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition/drug effects , Estrogen Antagonists/pharmacology , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Signal Transduction/drug effects , Tamoxifen/pharmacology
11.
Int J Oncol ; 43(6): 1777-86, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24100375

ABSTRACT

Apoptosis is controlled by the BCL-2 family of proteins, which can be divided into three different subclasses based on the conservation of BCL-2 homology domains. BIK is a founding member of the BH3-only pro-apoptotic protein family. BIK is predominantly localized in the endoplasmic reticulum (ER) and induces apoptosis through the mitochondrial pathway by mobilizing calcium from the ER to the mitochondria. In this study, we determined that suppression of the death gene Bik promotes resistance to tamoxifen (TAM) in MCF-7 breast cancer cells. We utilized small interfering (siRNA) to specifically knockdown BIK in MCF-7 cells and studied their response to tamoxifen. The levels of cell apoptosis, the potential mitochondrial membrane (∆Ψ(m)), and the activation of total caspases were analyzed. Western blot analysis was used to determine the expression of some BCL-2 family proteins. Flow cytometry studies revealed an increase in apoptosis level in MCF-7 cells and a 2-fold increase in relative BIK messenger RNA (mRNA) expression at a concentration of 6.0 µM of TAM. BIK silencing, with a specific RNAi, blocked TAM-induced apoptosis in 45 ± 6.78% of cells. Moreover, it decreased mitochondrial membrane potential (Ψm) and total caspase activity, and exhibited low expression of pro-apoptotic proteins BAX, BAK, PUMA and a high expression of BCl-2 and MCL-1. The above suggests resistance to TAM, regulating the intrinsic pathway and indicate that BIK comprises an important factor in the process of apoptosis, which may exert an influence the ER pathway, which regulates mitochondrial integrity. Collectively, our results show that BIK is a central component of the programmed cell death of TAM-induced MCF-7 breast cancer cells. The silencing of BIK gene will be useful for future studies to establish the mechanisms of regulation of resistance to TAM.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Apoptosis/drug effects , Drug Resistance, Neoplasm/genetics , Membrane Potential, Mitochondrial/drug effects , Membrane Proteins/metabolism , Tamoxifen/pharmacology , Antineoplastic Agents, Hormonal/pharmacology , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Breast Neoplasms , Caspases/metabolism , Cell Line, Tumor , Female , Humans , MCF-7 Cells , Membrane Potential, Mitochondrial/genetics , Membrane Proteins/genetics , Mitochondrial Proteins , RNA Interference , RNA, Small Interfering
SELECTION OF CITATIONS
SEARCH DETAIL
...