Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 80(1): 173-183, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31461434

ABSTRACT

Wastewater treatment facilities collecting wastewater from longstanding sewer networks of five municipalities in the Ave River basin (located in NW Portugal) are especially vulnerable to water inflows since they have considerable extensions of sewers installed in stream and riverbeds. TRATAVE, the company responsible for operating the system, designed and implemented a monitoring network to measure discharges along the entire drainage network and treatment facilities in order to reduce those water inflows. Several flow measurement devices were installed at strategic locations within the sewer network and integrated with a SCADA system responsible for its operation. A decision support system (DSS) is being implemented using the Delft-FEWS platform, integrating monitoring data and models. Based on monitored data and model results, an estimation of infiltration volumes during wet periods is presented. Moreover, the capabilities of the DSS are illustrated in: (i) location of manholes losses along sewer networks during wet periods; (ii) identification and location of unknown connections to the sewer network using wastewater balances; and (iii) design of a PID controller for a pumping station using on-line tank water level measurement. Acquired knowledge resulting from the DSS greatly improved the utility performance both in terms of economic revenue and environmental protection.


Subject(s)
Waste Disposal, Fluid/methods , Wastewater , Cities , Portugal , Rivers , Sewage
2.
J Anim Physiol Anim Nutr (Berl) ; 102(1): 82-93, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28299852

ABSTRACT

There is little information regarding the nutritional requirements for dairy heifers, leading the majority of nutrient requirement systems to consider dairy heifers to be similar to beef heifers. Therefore, we evaluated the muscle protein metabolism and physical and chemical body composition of growing Holstein × Gyr heifers and estimated the energy and protein requirements. We performed a comparative slaughter experiment with 20 Holstein × Gyr heifers at an initial body weight of 218 ± 36.5 kg and an average age of 12 ± 1.0 months. Four heifers were designated as the reference group, and the 16 remaining heifers were fed ad libitum. The 16 heifers were distributed using a completely randomized design in a 2 × 2 factorial arrangement with two roughages (corn silage or sugarcane) and two concentrate levels (30 or 50%) for 112 days. Greater (p < 0.05) values for fractional rates of muscle protein synthesis, degradation and accretion were observed for heifers that were fed 50% concentrate. The following equations were obtained to estimate the net energy for gain (NEg ) and net protein for gain (NPg ): NEg (Mcal/day) = 0.0685 × EBW0.75  × EBWG1.095 and NPg (g/day) = 203.8 × EBWG - 14.80 × RE, respectively, in which EBW is the empty body weight, EBWG is the empty body weight gain and RE is the retained energy. We concluded that increased rates of protein turnover are achieved when a greater quality diet is provided. In the future, these results can be used to calculate the nutritional requirements for growth of Holstein × Gyr heifers after equation validation rather than using the recommendations provided by other systems, which use values developed from beef heifers, to determine the nutritional requirements of dairy cattle.


Subject(s)
Cattle/growth & development , Diet/veterinary , Dietary Proteins/administration & dosage , Energy Intake , Nutritional Requirements , Animal Nutritional Physiological Phenomena , Animals , Female , Muscle Proteins/metabolism , Saccharum , Silage/analysis , Zea mays
3.
Water Sci Technol ; 68(2): 319-27, 2013.
Article in English | MEDLINE | ID: mdl-23863423

ABSTRACT

Excessive eutrophication is a major water quality issue in lakes and reservoirs worldwide. This complex biological process can lead to serious water quality problems. Although it can be adequately addressed by applying sophisticated mathematical models, the application of these tools in a reservoir management context requires significant amounts of data and large computation times. This work presents a simple primary production model and a calibration procedure that can efficiently be used in operational reservoir management frameworks. It considers four state variables: herbivorous zooplankton, algae (measured as chlorophyll-a pigment), phosphorous and nitrogen. The model was applied to a set of Portuguese reservoirs. We apply the model to 23 Portuguese reservoirs in two different calibration settings. This research work presents the results of the estimation of model parameters.


Subject(s)
Eutrophication , Models, Theoretical , Algorithms , Animals , Chlorophyll/analysis , Chlorophyll A , Computer Simulation , Nitrogen/analysis , Phosphorus/analysis , Portugal , Water Pollutants, Chemical/analysis , Water Supply , Zooplankton
SELECTION OF CITATIONS
SEARCH DETAIL