Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
J Am Chem Soc ; 146(22): 15027-15035, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38797950

ABSTRACT

Barium-cobaltate-based perovskite (BaCoO3-δ) and barium-cobaltate-based nanocomposites have been intensively studied in energy storage and conversion devices mainly due to flexible oxygen stoichiometry and tunable nonprecious transition metal oxidation states. Although a rich and complex family of structural polymorphs has already been reported for these perovskites in the literature, the potential structural evolution that may occur during the oxygen reduction reaction and the oxygen evolution reaction has not been investigated so far. In this study, we synthesized and characterized the lowest Co-oxidation state possible in the compound, BaCoO2, which exhibits a quartz-derived, trigonal structure with a helicoidally corner-sharing, CoO4-tetrahedral-framework as already proposed by Spitsbergen et al. Oxygen can reversibly be inserted in such a crystal structure to form BaCoO3-δ, i.e., with 0 ≤ δ ≤ 1, based on the results of an in situ coupled thermogravimetric - neutron diffraction study and which presents therefore giant oxygen capacity storage due to the extreme tunability of the electronic configuration of the cobalt cations which defines the fundamental origins of the materials performance. The reversible conversion of BaCoO2 to BaCoO3-δ associated with a similar electronic conductivity above 900 K permits to clarify the high potential of BaCoO3-δ-based energy storage and conversion devices.

2.
Inorg Chem ; 63(12): 5541-5551, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38475716

ABSTRACT

In the present study, we have investigated the stability of different Ba-Si clathrates with pressure and temperature using DFT calculations and studied the stability of type I Ba8Si46 and type IX Ba24Si100 clathrates using high pressure─high temperature synthesis technique, calorimetry, and diffraction experiments. When increasing pressure, the type I Ba8Si46 clathrate and BaSi6 become more stable. In good qualitative agreement with experiments, the type IX Ba24Si100 clathrate becomes stable at a pressure of 1-2 GPa thanks to the pressure and thermal effect of both electronic and vibrational contributions. One can notice that the presence of Ba in the cages of type IX clathrate increases significantly the stability and the mechanical properties of type IX clathrate. We have determined the P-T existence domain of type IX Ba24Si100 clathrate from ex situ experiments, which was confirmed by in situ synchrotron X-ray experiments. At room pressure and under an oxidizing atmosphere, the type I Ba8Si46 and the type IX Ba24Si100 clathrates are stable up to about 560 °C and up to about 600 °C, respectively. The thermoelectric properties of type IX Ba24Si100 are also reported.

3.
Phys Chem Chem Phys ; 25(3): 1987-1997, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36541664

ABSTRACT

We report the lattice dynamics and thermoelectric properties of topological semimetal Ba3Si4. The lattice dynamics has been studied by Raman and inelastic neutron scattering experiments. Good agreement has been found with first-principles calculations. The presence of low-energy optical modes at about 7 meV mainly due to the heavy mass of the Ba atoms suggests a propensity to low thermal conductivity, which is favorable for thermoelectric applications. Our density functional theory calculations indicate that the semimetallic nature of Ba3Si4 is the origin for the rather large thermopower. Ba3Si4 shows high potential for a thermoelectric material with a Seebeck coefficient as large as -120 µV K-1 for 0.2 electrons/formula units through the substitution of Ba by appropriate cations, such as Y.

4.
Nanomaterials (Basel) ; 11(11)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34835616

ABSTRACT

Nanostructured ß-FeSi2 and ß-Fe0.95Co0.05Si2 specimens with a relative density of up to 95% were synthesized by combining a top-down approach and spark plasma sintering. The thermoelectric properties of a 50 nm crystallite size ß-FeSi2 sample were compared to those of an annealed one, and for the former a strong decrease in lattice thermal conductivity and an upshift of the maximum Seebeck's coefficient were shown, resulting in an improvement of the figure of merit by a factor of 1.7 at 670 K. For ß-Fe0.95Co0.05Si2, one observes that the figure of merit is increased by a factor of 1.2 at 723 K between long time annealed and nanostructured samples mainly due to an increase in the phonon scattering and an increase in the point defects. This results in both a decrease in the thermal conductivity to 3.95 W/mK at 330 K and an increase in the power factor to 0.63 mW/mK2 at 723 K.

5.
Phys Chem Chem Phys ; 21(46): 25720-25727, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31720609

ABSTRACT

Chromium disilicide (CrSi2) particles were synthesized by using an arc melting furnace followed by mechanical milling. XRD and DLS analyses show that aggregates of around 3 µm containing about 10 nm sized crystallites were obtained. These aggregates were functionalized in solution by coupling agents with different anchoring groups (silane, phosphonic acid, alkene and thiol) in order to disperse them into an organic polymer. Dodecene was used to modify the CrSi2 surface during mechano-synthesis in a grinding bowl with quite little solvent quantity and the optimization step allowed the aggregate size to be reduced to 500 nm. A thermoelectric composite was then made of alkene CrSi2 grafted samples and poly(p-phénylène-2,6-benzobisoxazole). This study opens the route for new surface grafting of intermetallic silicides for applications linked to electronics and/or energy.

6.
Inorg Chem ; 57(2): 754-767, 2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29266938

ABSTRACT

Recrystallization of amorphous compounds can lead to the stabilization of metastable crystalline phases, which offers an interesting way to unveil novel binary or ternary compounds and control the transport properties of the obtained glass ceramics. Here, we report on a systematic study of the Cu-As-Te glassy system and show that under specific synthesis conditions using the spark-plasma-sintering technique, the α-As2Te3 and ß-As2Te3 binary phases and the previously unreported AsTe3 phase can be selectively crystallized within an amorphous matrix. The microstructures and transport properties of three different glass ceramics, each of them containing one of these phases with roughly the same crystalline fraction (∼30% in volume), were investigated in detail by means of X-ray diffraction, scanning electron microscopy, neutron thermodiffraction, Raman scattering (experimental and lattice-dynamics calculations), and transport-property measurements. The physical properties of the glass ceramics are compared with those of both the parent glasses and the pure crystalline phases that could be successfully synthesized. SEM images coupled with Raman spectroscopy evidence a "coast-to-island" or dendriticlike microstructure with microsized crystallites. The presence of the crystallized phase results in a significant decrease in the electrical resistivity while maintaining the thermal conductivity to low values. This study demonstrates that new compounds with interesting transport properties can be obtained by recrystallization, which in turn provides a tuning parameter for the transport properties of the parent glasses.

7.
Inorg Chem ; 56(19): 11591-11602, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28892366

ABSTRACT

We report for the first time the full crystal structure, the electronic structure, the lattice dynamics, and the elastic constants of metastable monoclinic AlGe. In addition to ultrarapid cooling techniques such as melt spinning, we show the possibility of obtaining monoclinic AlGe by water-quenching in a quartz tube. Monoclinic AlGe and rhombohedral Al6Ge5 are competing phases with similar stability since they both begin to decompose above 230 °C. The crystal structure and electronic bonding of monoclinic AlGe are similar to those of ZnSb and comply with its 3.5 valence electrons per atom: besides classical two electron-two center Al-Ge and Ge-Ge covalent bonds, Al2Ge2 parallelogram rings are formed by uncommon multicenter bonds. Monoclinic AlGe could be used in various applications since it is found theoretically to be an electron-poor semiconductor with a narrow indirect energy bandgap of about 0.5 eV. The lattice dynamics calculations show the presence of low energy optical phonons, which should lead to a low thermal conductivity.

8.
J Phys Condens Matter ; 29(7): 075501, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28035089

ABSTRACT

First principles calculations have been carried out to study the native single-defects and multi-vacancies in TaN and TiN with a cubic rocksalt structure mainly used as diffusion barriers. Our results indicate that vacancies are the most stable single-defects in both compounds and that nitrogen interstitial defects in tetrahedral interstitial site are significantly more stable in TaN than in TiN. The interactions between vacancies are attractive in TaN in contrast to the case of TiN. The vacancies show a much larger tendency to cluster and to form bi- and tri- vacancies in TaN than in TiN. We suggest that the number of d electrons might explain this difference in the defect stability. These results will have impact on the use of these materials as diffusion barrier.

9.
J Phys Condens Matter ; 25(3): 035403, 2013 Jan 23.
Article in English | MEDLINE | ID: mdl-23238114

ABSTRACT

We report an ab initio study of the semiconducting Mg(2)X (with X = Si, Ge) compounds and in particular we analyze the formation energies of the different point defects with the aim of understanding the intrinsic doping mechanisms. We find that the formation energy of Mg(2)Ge is 50% larger than that of Mg(2)Si, in agreement with the experimental tendency. From a study of the stability and the electronic properties of the most stable defects, taking into account the growth conditions, we show that the main cause of the n doping in these materials comes from interstitial magnesium defects. Conversely, since other defects acting like acceptors such as Mg vacancies or multivacancies are more stable in Mg(2)Ge than in Mg(2)Si, this explains why Mg(2)Ge can be of n or p type, in contrast to Mg(2)Si. The finding that the most stable defects are different in Mg(2)Si and Mg(2)Ge and depend on the growth conditions is important and must be taken into account in the search for the optimal doping to improve the thermoelectric properties of these materials.


Subject(s)
Computer Simulation , Germanium/chemistry , Magnesium/chemistry , Models, Chemical , Silicon/chemistry , Surface Properties , Models, Statistical
10.
J Phys Chem A ; 115(31): 8761-6, 2011 Aug 11.
Article in English | MEDLINE | ID: mdl-21736349

ABSTRACT

We present a study of the thermodynamic and physical properties of Tl(5)Te(3), BiTl(9)Te(6), and SbTl(9)Te(6) compounds by means of density functional theory based calculations. The optimized lattice constants of the compounds are in good agreement with the experimental data. The electronic density of states and band structures are calculated to understand the bonding mechanism in the three compounds. The indirect band gaps of BiTl(9)Te(6) and SbTl(9)Te(6) compounds are found to be equal to 0.256 and 0.374 eV, respectively. The spin-orbit coupling has important effects on the electronic structure of the two semiconducting compounds and should therefore be included for a good numerical description of these materials. The elastic constants of the three compounds have been calculated, and the bulk modulus, shear modulus, and Young's modulus have been determined. The change from ductile to brittle behavior after Sb or Bi alloying is related to the change of the electronic properties. Finally, the Debye temperature and longitudinal, transverse, and average sound velocities have been obtained.

11.
Nat Mater ; 7(10): 805-10, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18758457

ABSTRACT

The material class of skutterudites is believed to have strong potential for thermoelectric application due to the very low thermal conductivity of the filled structures. It is generally assumed that the atoms filling the skutterudite cages act as 'rattlers' and essentially induce a disordered lattice dynamics referred to as 'phonon glass'. Here, we present neutron spectroscopy experiments and ab initio computational work on phonons in LaFe(4)Sb(12) and CeFe(4)Sb(12). Our results give unequivocal evidence of essentially temperature-independent lattice dynamics with well-defined phase relations between guest and host dynamics, indicative of a quasi-harmonic coupling between the guests and the host lattice. These conclusions are in disagreement with the 'phonon glass' paradigm based on individual 'rattling' of the guest atoms. These findings should have an essential impact on the design and improvement of thermoelectric materials and on the development of microscopic models needed for these efforts.

SELECTION OF CITATIONS
SEARCH DETAIL