Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(18)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39337480

ABSTRACT

Pomegranate (Punica granatum L.) peel is a potential source of bioactive phenolic compounds such as ellagic acid and α- and ß-punicalagin. This work explores the efficiency of natural deep eutectic solvents combined with ultrasound-assisted extraction (UAE) and pressurized liquid extraction (PLE) for their extraction. Five NaDESs were evaluated by employing UAE (25 °C, for 50 min) to determine their total phenolic content (Folin-Ciocalteu assay) and ellagic acid and α- and ß-punicalagin contents (high-performance liquid chromatography (HPLC-DAD)). The NaDES composed of choline chloride (ChCl) and glycerol (Gly) (1:2, molar ratio) was the most efficient in the UAE when compared with the rest of the NaDESs and water extracts. Therefore, ChCl:Gly was further evaluated using PLE at different temperatures (40, 80, 120 and 160 °C). The PLE-NaDES extract obtained at 80 °C for 20 min at 1500 psi exhibited the highest contents of ellagic acid and α- and ß-punicalagin compared to the rest of the temperatures and PLE-water extracts obtained under the same extraction conditions. Combining UAE or PLE with a NaDES emerges as a sustainable alternative for extracting ellagic acid and α- and ß-punicalagin from pomegranate peel.


Subject(s)
Ellagic Acid , Phenols , Plant Extracts , Pomegranate , Pomegranate/chemistry , Phenols/chemistry , Phenols/isolation & purification , Phenols/analysis , Plant Extracts/chemistry , Ellagic Acid/chemistry , Ellagic Acid/isolation & purification , Deep Eutectic Solvents/chemistry , Chromatography, High Pressure Liquid/methods , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/isolation & purification , Fruit/chemistry , Solvents/chemistry
2.
Food Res Int ; 182: 114134, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519156

ABSTRACT

Hesperidin is a phenolic compound usually found in citrus fruits, which is known for its anti-inflammatory and antioxidant properties. This bioactive compound has already been used to formulate medications to treat chronic venous insufficiency. In this work, through a system which allows the in-line coupling of the pressurized liquid extraction (PLE) and high-intensity ultrasound (HIUS) with solid phase extraction (SPE), and analysis by high-performance liquid chromatography with UV-Vis detector (HPLC-UV) in on-line mode, a method was developed to obtain, separate, and quantify hesperidin from the industrial waste of lime. An eco-friendly approach with water and ethanol as extraction solvents was used. Parameters such as temperature (80, 100, and 120 °C) and HIUS power (0, 200, and 400 W) were evaluated regarding hesperidin yield. In this context, the higher hesperidin yield (18.25 ± 1.52 mg/g) was achieved using water at a subcritical state (120 °C and 15 MPa). The adsorbent SepraTM C-18-E isolated hesperidin from the other extracted compounds employing 50% ethanol in the SPE elution. The possibility ofon-lineanalysis coupling a high-performance liquid chromatograph to an ultraviolet detector (HPLC-UV) system was studied and shown to be a feasible approach for developing integrated technologies. Conventional extractions and their antioxidant capacities were evaluated, highlighting the advantages of the HIUS-PLE-SPE extractive method. Furthermore, the on-linechromatographic analysis showed the potential of the HIUS-PLE-SPE- HPLC-UV system to quantify the extracted compounds in real time.


Subject(s)
Calcium Compounds , Hesperidin , Oxides , Antioxidants , Water/chemistry , Ethanol
3.
Food Chem ; 435: 137540, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37778266

ABSTRACT

Carnosic (CA) and rosmarinic (RA) acids are the primary phenolic acids in hydrophilic rosemary extracts. Their combination exhibits high antioxidant activity and can be explored in several applications. This study aimed to develop an extraction procedure using bio-based solvents to recover two rosemary extracts, one rich in CA and the other in RA. By using ultrasound-assisted extraction (UAE) and a pool of 34 solvents, we evaluated nominal power (W), extraction time (min), and solvent water percentage (% H2O) regarding yield and selectivity. The authors propose a sequential UAE procedure validated by applying ethanol 99.5 % (v/v), 240 W, and 5 min to recover a rich fraction of 24.0 mgCA.gbiomass-1; followed by a second step using AmAc:LA (1:2 M ratio), 20 % H2O (m/m), 320 W, and 5 min that resulted in 8.4 mgRA.gbiomass-1. Our results indicate that modulating the solvent composition and process temperature is critical to increasing extraction yields and selectivity.


Subject(s)
Rosmarinus , Solvents , Plant Extracts , Antioxidants , Rosmarinic Acid
4.
Molecules ; 28(9)2023 May 01.
Article in English | MEDLINE | ID: mdl-37175258

ABSTRACT

Supercritical carbon dioxide (CO2) extraction techniques meet all-new consumer market demands for health-promoting phytochemical compound-rich extracts produced from green and sustainable technology. In this regard, this review is dedicated to discussing is the promise of integrating high-pressure CO2 technologies into the Cannabis sativa L. processing chain to valorize its valuable pharmaceutical properties and food biomass. To do this, the cannabis plant, cannabinoids, and endocannabinoid system were reviewed to understand their therapeutic and side effects. The supercritical fluid extraction (SFE) technique was presented as a smart alternative to producing cannabis bioproducts. The impact of SFE operating conditions on cannabis compound extraction was examined for aerial parts (inflorescences, stems, and leaves), seeds, and byproducts. Furthermore, the opportunities of using non-thermal supercritical CO2 processing on cannabis biomass were addressed for industrial hemp valorization, focusing on its biorefinery to simultaneously produce cannabidiol and new ingredients for food applications as plant-based products.


Subject(s)
Cannabis , Hallucinogens , Cannabis/chemistry , Carbon Dioxide , Biomass , Phytochemicals , Technology
5.
Food Chem ; 407: 135117, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36512911

ABSTRACT

Due to the complex characteristics and variable composition of apple pomace, sample preparation for chromatographic analysis is a great challenge. To solve this problem, we proposed using a solvent gradient using Pressurized Liquid Extraction (PLE), where the solvent gradually changes from water to ethanol during the extraction. Different dynamic gradients, static time, and temperatures were evaluated and showed relevant effects on the yields of target analytes. It was possible to improve extraction yields of compounds with different characteristics using the extraction solvent gradient. By coupling solid-phase extraction in-line, it was possible to separate compounds into fractions, where furfural, HMF, and chlorogenic acid gradually eluted from the adsorbent. At the same time, flavonoids were retained and eluted in the later fractions. On-line analysis by HPLC provided real-time information about the process and permitted the creation of a 3D chromatogram of the sample.


Subject(s)
Malus , Chromatography, High Pressure Liquid/methods , Malus/chemistry , Phenols/analysis , Solvents/chemistry , Solid Phase Extraction
6.
J Sep Sci ; 46(3): e2200440, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36449264

ABSTRACT

Propolis is a bee product with a complex chemical composition formed by several species from different geographical origins. The complex propolis composition requires an accurate and reproducible characterization of samples to standardize the quality of the material sold to consumers. This work developed an ultra-high-performance liquid chromatography with a photodiode array detector method to analyze propolis phenolic compounds based on the two key propolis biomarkers, Artepillin C and p-Coumaric acid. This choice was made due to the complexity of the sample with the presence of several compounds. The optimized method was hyphenated with mass spectrometry detection allowing the detection of 23 different compounds. A step-by-step strategy was used to optimize temperature, flow rate, mobile phase composition, and re-equilibration time. Reverse-phase separation was achieved with a C18 fused-core column packed with the commercially available smallest particles (1.3 nm). Using a fused-core column with ultra-high-performance liquid chromatography allows highly efficient, sensitive, accurate, and reproducible determination of compounds extracted from propolis with an outstanding sample throughput and resolution. Optimized conditions permitted the separation of the compounds in 5.50 min with a total analysis time (sample-to-sample) of 6.50 min.


Subject(s)
Propolis , Chromatography, High Pressure Liquid/methods , Propolis/analysis , Reproducibility of Results , Phenols/analysis , Mass Spectrometry
7.
Polymers (Basel) ; 14(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36432933

ABSTRACT

Barbatimão (Stryphnodendron adstringens) is a Brazilian medicinal plant known for its pharmacological properties, including healing activity related to its phenolic composition, which is chiefly given by tannins. In order to preserve its stability and bioactivity, barbatimão extracts can be incorporated into (bio-)polymeric matrixes, of which silk fibroin stands out due to its versatility and tunable properties. This work aimed to obtain barbatimão bark extract rich in phenolic compounds and evaluate its incorporation in fibroin hydrogels. From the extraction process, it was observed that the PG (propylene glycol) extract presented a higher global yield (X0) and phenolic compounds (TPC) than the ET (ethanol) extract. Furthermore, the antioxidant activity (ORAC and FRAP) was similar between both extracts. Regarding the hydrogels, morphological, chemical, thermal, and mechanical characterizations were performed to understand the influence of the barbatimão extract and the solvent on the fibroin hydrogel properties. As a result, the hydrogels containing the barbatimão PG extract (BT/PG hydrogels) showed the better physical-chemical and structural performance. Therefore, these hydrogels should be further investigated regarding their potential in medical and pharmaceutical applications, especially in wound healing.

8.
Food Res Int ; 161: 111846, 2022 11.
Article in English | MEDLINE | ID: mdl-36192975

ABSTRACT

Propolis is a rich source of known and largely explored bioactive compounds with many pharmacological properties. It is used in several commercialized products, such as propolis-enriched honey, candies, mouth and throat sprays, soaps, toothpaste, and skin creams. However, the great diversity of propolis products and different types make the standardization of realistic quality control procedures challenging. Moreover, the extraction of propolis bioactive compounds depends on the technique and the solvent used. In Brazil, the Ministry of Agriculture, Livestock, and Supply (MAPA) set standards to establish commercialized propolis extracts' identity and quality. In addition, according to legislation, propolis extracts must present the main classes of phenols at 200 and 400 nm on the UV spectrum. Still, it is not specified which analysis method should be used to guarantee feasible quality control of the commercialized samples. For this, we proposed a new fast UHPLC-PDA-MS/MS method for analysis and quantification of propolis phenolic compounds. Moreover, we hypothesize that there is no efficient monitoring regarding the quality of the propolis extracts sold in Brazilian stores. Therefore, the present study aimed to perform quality control of 17 Brazilian propolis extracts produced in the Southeast region (green or brown - the most representative samples). The dry extract content (% g/mL), oxidation index (seconds), total flavonoids, and phenolics (% m/m) of each sample were compared with legislation. We conclude that using the UHPLC-PDA method and the investigation that allowed the comparison with the current legislation efficiently practical problems in the commercialization of propolis extracts. However, of the 17 analyzed samples, 6 did not meet the desired the recognized standards, denoting a lack of supervision and efficient quality control, which highlights a dangerous situation regarding the commercialization of this critical product used in several industrial fields, mainly in the food and pharmaceutical sector.


Subject(s)
Propolis , Brazil , Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , Pharmaceutical Preparations , Phenols/analysis , Plant Extracts , Propolis/pharmacology , Quality Control , Reference Standards , Soaps/analysis , Solvents , Tandem Mass Spectrometry , Toothpastes/analysis
9.
Food Res Int ; 160: 111711, 2022 10.
Article in English | MEDLINE | ID: mdl-36076407

ABSTRACT

This study aimed to extract anthocyanins from dried and semi-defatted açaí pulp using green technologies based on the coupling of pressurized liquid extraction (PLE) with in-line purification through solid-phase extraction (SPE) and on-line analysis by high-performance liquid chromatography (HPLC). Critical parameters that affect the extraction efficiency and purification were investigated and optimized by response surface methodology (RSM). PLE was performed with acidified water at different pH (2.0, 4.5, and 7.0) and temperatures (40, 80, and 120 °C) at 15 MPa, 2 mL/min, and solvent-to-feed mass ratio equal to 40. SPE was optimized in a column packed with the adsorbent PoraPak™ Rxn. Different ethanol concentrations (50, 75, and 100 %) and temperatures (30, 40, and 50 °C) were evaluated for the anthocyanin's elution. The optimal conditions of the two experimental designs were determined by the RSM, firstly for PLE: 71 °C and pH 2; then using this PLE condition, the optimization of the SPE was obtained: 30 °C and 50 % ethanol. The developed PLE method provided similar anthocyanin yield to other techniques, and the coupling with SPE in-line produced an extract 5-fold more concentrated than PLE alone. Therefore, the system (PLE-SPE × HPLC-PDA) proved to be a powerful tool for monitoring the extraction process in real-time.


Subject(s)
Anthocyanins , Euterpe , Carbon Dioxide , Chromatography, High Pressure Liquid , Ethanol , Solid Phase Extraction
10.
Crit Rev Anal Chem ; : 1-27, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35993795

ABSTRACT

Citrus fruits (CF) are highly consumed worldwide, fresh, processed, or prepared as juices and pies. To illustrate the high economic importance of CF, the global production of these commodities in 2021 was around 98 million tons. CF's composition is considered an excellent source of phenolic compounds (PC) as they have a large amount and variety. Since ancient times, PC has been highlighted to promote several benefits related to oxidative stress disorders, such as chronic diseases and cancer. Recent studies suggest that consuming citrus fruits can prevent some of these diseases. However, due to the complexity of citrus matrices, extracting compounds of interest from these types of samples, and identifying and quantifying them effectively, is not a simple task. In this context, several extractive and analytical proposals have been used. This review discusses current research involving CF, focusing mainly on PC extraction and analysis methods, regarding advantages and disadvantages from the perspective of Green Chemistry.

11.
Food Res Int ; 157: 111252, 2022 07.
Article in English | MEDLINE | ID: mdl-35761564

ABSTRACT

This work aimed to develop an integrated method to extract and fractionate phenolic compounds from lemon (Citrus limon L.) peel by in-line coupling pressurized liquid extraction and solid-phase extraction (PLE-SPE). The effect of the adsorbent used in the SPE (Sepra™ C18-E, Sepra™ NH2, and PoraPak Rxn), the combination of organic extraction-elution solvents (water-ethanol and water-ethyl lactate), extraction temperature (40-80 °C), and extraction water pH (4.0, 6.0, and 7.0) were the investigated variables. The highest yield and separation degree were observed using Sepra™ C18-E and the water-ethanol combination as the extraction solvent-eluent. Higher temperatures led to higher yields but negatively affected the retention of less polar compounds, hesperidin, and narirutin during the extraction step. The lower pH improved the yield of most evaluated compounds; however, it did not improve the adsorbent retention at high temperatures. Thus, the developed PLE-SPE method resulted in higher extraction yields from lemon peel, especially total less polar compounds (20.2100 ± 0,0050 mg/g) and hesperidin (12.8120 ± 0.0006 mg/g) and allowed the separation of polar compounds and less polar compounds in distinct extract fractions. Besides, PLE-SPE resulted in higher yields compared to other extraction methods. The integrated approach allowed obtaining extract fractions with different chemical composition through an environmentally friendly procedure. The research outcomes may be helpful for natural products chemistry, and industrial processes.


Subject(s)
Citrus , Hesperidin , Ethanol , Phenols/chemistry , Solid Phase Extraction , Solvents/chemistry , Water
12.
Food Res Int ; 157: 111381, 2022 07.
Article in English | MEDLINE | ID: mdl-35761637

ABSTRACT

This work evaluated two emerging techniques in extracting phenolic compounds from Tahiti lime pomace - pressurized liquid extraction (PLE) and ultrasound-assisted extraction (UAE). PLE was performed at different temperatures (60 - 110 °C) and times (5 - 40 min), and UAE was carried out varying ultrasound power (160 - 792 W), time (2 - 10 min), and solvent to feed mass ratio (20 - 40 kg solvent/kg dried pomace). Both used ethanol and water (3:1, wt.) as the solvent. The effects of these variables were evaluated on global extraction yield, polyphenols, hesperidin, narirutin yields, and antioxidant capacity. PLE was strongly affected by temperature and extraction time, and the highest temperature (110 °C) provided the best results for global yield, total phenolic, and ORAC, except for hesperidin and narirutin, which were not significative affected by temperature. UAE revealed a weak dependency on power, S/F, and time; however, the lowest power level significantly increased the yields compared to no power application. Thus, P = 480 W, t = 6 min, and S/F = 30 was chosen as the best condition in the UAE in terms of overall extraction yield, total phenolics, specific phenolics, antioxidant capacities, and solvent and energy expenditures. UAE mechanisms were investigated by comparing with heated and stirred maceration, and scanning electron microscopy suggested that total phenolic yield was influenced by mechanisms that only ultrasound can provide. Micrographics confirmed the cavitation effect on Tahiti lime pomace particles' surface. To sum up, PLE resulted in the highest yields and antioxidant capacity, followed by UAE.


Subject(s)
Antioxidants/chemistry , Citrus , Hesperidin , Calcium Compounds/chemistry , Hesperidin/chemistry , Hesperidin/isolation & purification , Oxides/chemistry , Phenols/chemistry , Phenols/isolation & purification , Solvents
13.
Food Res Int ; 157: 111470, 2022 07.
Article in English | MEDLINE | ID: mdl-35761701

ABSTRACT

This study evaluated the subcritical water hydrolysis (SWH) of brewer's spent grains (BSG) to obtain sugars and amino acids. The experimental conditions investigated the hydrolysis of BSG in a single flow-through reactor and in two sequential reactors operated in semi-continuous mode. The hydrolysis experiments were carried out for 120 min at 15 MPa, 5 mL water min-1, at different temperatures (80 - 180 °C) and using an S/F of 20 and 10 g solvent g-1 BSG, for the single and two sequential reactors, respectively. The highest monosaccharide yields were obtained at 180 °C in a single reactor (47.76 mg g-1 carbohydrates). With these operational conditions, the hydrolysate presented xylose (0.477 mg mL-1) and arabinose (1.039 mg mL-1) as main sugars, while low contents of furfural (310.7 µg mL-1), 5-hydroxymethylfurfural (<1 mg L-1), and organic acids (0.343 mg mL-1) were obtained. The yield of proteins at 180 °C in a process with a single reactor was 43.62 mg amino acids g-1 proteins, where tryptophan (215.55 µg mL-1), aspartic acid (123.35 µg mL-1), valine (64.35 µg mL-1), lysine (16.55 µg mL-1), and glycine (16.1 µg mL-1) were the main amino acids recovered in the hydrolysate. In conclusion, SWH pretreatment is a promising technology to recover bio-based compounds from BSG; however, further studies are still needed to increase the yield of bioproducts from lignocellulosic biomass to explore two sequential reactors.


Subject(s)
Sugars , Water , Amino Acids/analysis , Edible Grain/chemistry , Hydrolysis , Sugars/analysis , Water/analysis
15.
Food Chem X ; 14: 100262, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35243328

ABSTRACT

In this work, a method based on ultra-high-performance liquid chromatography with a photodiode array detector (UPLC-PDA) was developed to comprehensively analyze phenolic compounds in peels of lime (Citrus × latifolia), lemon (Citrus limon), and rangpur lime (Citrus × limonia). The reverse-phase separation was achieved with a C18 fused-core column packed with the smallest particles commercially available (1.3 um). The method was successfully coupled with high-resolution mass spectrometry (HRMS), allowing the detection of 24 phenolic compounds and five limonoids in several other citrus peels species: key lime, orange and sweet orange, tangerine, and tangerine ponkan, proving the suitability for comprehensive analysis in citrus peel matrices. Additionally, the developed method was validated according to the Food and drug administration (FDA) and National Institute of Metrology Quality and Technology (INMETRO) criteria, demonstrating specificity, linearity, accuracy, and precision according to these guidelines. System suitability parameters such as resolution, tailoring, plate count were also verified.

16.
Food Chem X ; 13: 100228, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35128385

ABSTRACT

Peppers of the Capsicum genus have a rich nutritional composition and are widely consumed worldwide. Thus, they find numerous applications in the food, pharmaceutical and cosmetic industries. One commercial application is oleoresin production, a nonpolar fraction rich in bioactive compounds, including capsaicinoids and carotenoids. Among the technologies for pepper processing, special attention is given to supercritical fluid technologies, such as supercritical fluid extraction (SFE) with pure solvents and CO2 plus modifiers, and SFE assisted by ultrasound. Supercritical fluid-based processes present advantages over the classical extraction techniques like using less solvents, short extraction times, specificity and scalability. In this review, we present a brief overview of the nutritional aspects of peppers, followed by studies that apply supercritical fluid technologies to produce extracts and concentrate bioactives, besides oleoresin encapsulation. Furthermore, we present related phase equilibrium, cost estimation, and the gaps and needs for the full use of peppers from a sustainable perspective.

17.
J Food Biochem ; 46(3): e13885, 2022 03.
Article in English | MEDLINE | ID: mdl-34338308

ABSTRACT

We evaluated the impact of yellow passion fruit (Passiflora edulis sp.) bagasse extract (PFBE) administration in systemic oxidative and inflammatory parameters in vivo, considering prostate cancer progression in transgenic mice (TRAMP). Piceatannol, scirpusin-B, dicaffeoylquinic acid, citric acid, and (+)-catechin were identified in PFBE, and the extract showed high in vitro antioxidant capacity. Some alterations in systemic parameters were verified during prostate cancer progression, as the increase in ALT and MDA levels, and SOD and GPx activities in the plasma. In the liver, higher MDA, TNF-α, and NF-κB levels, and GR and GPx activities were verified. Compared to their respective controls, the short- and long-term PFBE administration reduced MDA levels in the liver and plasma. The long-term treatment increased the catalase activity in the plasma, while the short-term treatment increased the hepatic SOD and catalase activities. Still, a reduction in hepatic TNF-α and NF-κB levels was verified after long-term treatment. PRACTICAL APPLICATIONS: Prostate cancer progression is associated with changes in systemic redox status and inflammation markers. Moreover, the intake of polyphenols with antioxidant properties, besides delaying prostate carcinogenesis, may improve the systemic antioxidant defenses and inflammatory response. In vitro studies pointed to a promising antioxidant and anti-inflammatory potential of yellow passion fruit bagasse. However, in vivo studies are scarce. Our results provided information about in vivo impacts of PFBE oral consumption on antioxidant defense and inflammation, indicating its potential as an adjuvant during the initial steps of prostate cancer.


Subject(s)
Passiflora , Prostatic Neoplasms , Animals , Antioxidants , Catalase , Cellulose , Fruit , Humans , Inflammation/drug therapy , Male , Mice , NF-kappa B/genetics , Plant Extracts/pharmacology , Prostate , Prostatic Neoplasms/drug therapy , Superoxide Dismutase , Tumor Necrosis Factor-alpha/genetics
18.
Food Chem X ; 12: 100133, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34632369

ABSTRACT

Apple is one of the most consumed fruits worldwide and has recognized nutritional properties. Besides being consumed fresh, it is the raw material for several food products, whose production chain generates a considerable amount of by-products that currently have an underestimated use. These by-products are a rich source of chemical compounds with several potential applications. Therefore, new ambitious platforms focused on reusing are needed, targeting a process chain that achieves well-defined products and mitigates waste generation. This review covers an essential part of the apple by-products reuse chain. The apple composition regarding phenolic compounds subclasses is addressed and related to biological activities. The extraction processes to recover apple biocompounds have been revised, and an up-to-date overview of the scientific literature on conventional and emerging extraction techniques adopted over the past decade is reported. Finally, gaps and future trends related to the management of apple by-products are critically presented.

19.
Molecules ; 26(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34500551

ABSTRACT

The coupling of innovative technologies has emerged as a smart alternative for the process intensification of bioactive compound extraction from plant matrices. In this regard, the development of hybridized techniques based on the low-frequency and high-power ultrasound and high-pressure technologies, such as supercritical fluid extraction, pressurized liquids extraction, and gas-expanded liquids extraction, can enhance the recovery yields of phytochemicals due to their different action mechanisms. Therefore, this paper reviewed and discussed the current scenario in this field where ultrasound-related technologies are coupled with high-pressure techniques. The main findings, gaps, challenges, advances in knowledge, innovations, and future perspectives were highlighted.


Subject(s)
Phytochemicals/chemistry , Technology/methods , Animals , Plants/chemistry , Ultrasonic Waves
20.
Anal Chim Acta ; 1178: 338845, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34482871

ABSTRACT

The comprehensive analysis of phenolic compounds from natural products comprises critical steps, including quantitative extraction, extract preparation, and chromatographic procedure. Performing these steps off-line requires a long time to obtain results, besides being laborious and more error-prone. This work discusses the concept and presents the details of assembling and validating a new system to comprehensively analyze phenolic compounds in natural products. The system is based on a bidimensional separation through the combination of pressurized liquid extraction with in-line solid-phase extraction coupled online with HPLC-PDA. The system proved to be able to perform a bidimensional separation to characterize the sample and ensure quantitative extraction of all detected components using the most appropriate extraction solvent gradient depending on the raw sample analyzed. The 1st dimension separation is achieved by PLE-SPE with a solvent gradient and differential interactions of extracted compounds with the adsorbent. The 2nd dimension presents the HPLC-PDA separation. The extraction/separation process can be monitored in real-time, and kinetic extraction curves for individual compounds can also be obtained to ensure quantitative extraction. Thus, the 2D PLE-SPE × HPLC-PDA may provide fast and precise comprehensive analyses of a large plethora of phenolic compounds, finding relevant applications in the chemical, food, pharmaceutical, and agricultural fields.


Subject(s)
Biological Products , Chromatography, High Pressure Liquid , Phenols/analysis , Solid Phase Extraction , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL