Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 13(4): e0102422, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35924840

ABSTRACT

The entry routes and translocation mechanisms of microorganisms or particulate materials into the central nervous system remain obscure We report here that Streptococcus pneumoniae (pneumococcus), or polystyrene microspheres of similar size, appear in the meninges of the dorsal cortex of mice within minutes of inhaled delivery. Recovery of viable bacteria from dissected tissue and fluorescence microscopy show that up to at least 72 h, pneumococci and microspheres were predominantly found in the outer of the two meninges: the pachymeninx. No pneumococci were found in blood or cerebrospinal fluid. Intravital imaging through the skull, aligned with flow cytometry showed recruitment and activation of LysM+ cells in the dorsal pachymeninx at 5 and 10 hours following intranasal infection. Imaging of the cribriform plate suggested that both pneumococci and microspheres entered through the foramina via an inward flow of fluid connecting the nose to the pachymeninx. Our findings bring new insight into the varied mechanisms of pneumococcal invasion of the central nervous system, but they are also pertinent to the delivery of drugs to the brain and the entry of airborne particulate matter into the cranium. IMPORTANCE Using two-photon imaging, we show that pneumococci translocate from the nasopharynx to the dorsal meninges of a mouse in the absence of any bacteria found in blood or cerebrospinal fluid. Strikingly, this takes place within minutes of inhaled delivery of pneumococci, suggesting the existence of an inward flow of fluid connecting the nasopharynx to the meninges, rather than a receptor-mediated mechanism. We also show that this process is size dependent, as microspheres of the same size as pneumococci can translocate along the same pathway, while larger size microspheres cannot. Furthermore, we describe the host response to invasion of the outer meninges. Our study provides a completely new insight into the key initial events that occur during the translocation of pneumococci directly from the nasal cavity to the meninges, with relevance to the development of intranasal drug delivery systems and the investigations of brain damage caused by inhaled air pollutants.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Animals , Central Nervous System , Ethmoid Bone , Meninges/microbiology , Mice , Nasopharynx/microbiology , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/physiology
2.
Nat Biotechnol ; 40(10): 1509-1519, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35879362

ABSTRACT

The use of therapeutic monoclonal antibodies is constrained because single antigen targets often do not provide sufficient selectivity to distinguish diseased from healthy tissues. We present HexElect®, an approach to enhance the functional selectivity of therapeutic antibodies by making their activity dependent on clustering after binding to two different antigens expressed on the same target cell. lmmunoglobulin G (lgG)-mediated clustering of membrane receptors naturally occurs on cell surfaces to trigger complement- or cell-mediated effector functions or to initiate intracellular signaling. We engineer the Fc domains of two different lgG antibodies to suppress their individual homo-oligomerization while promoting their pairwise hetero-oligomerization after binding co-expressed antigens. We show that recruitment of complement component C1q to these hetero-oligomers leads to clustering-dependent activation of effector functions such as complement mediated killing of target cells or activation of cell surface receptors. HexElect allows selective antibody activity on target cells expressing unique, potentially unexplored combinations of surface antigens.


Subject(s)
Antigens , Complement C1q , Antibodies, Monoclonal , Antigens, Surface , Complement C1q/metabolism , Logic
3.
Drug Resist Updat ; 60: 100806, 2022 01.
Article in English | MEDLINE | ID: mdl-35121337

ABSTRACT

Squamous cell carcinoma of the head and neck (SCCHN) is among the most prevalent cancer types worldwide. Despite multimodal therapeutic approaches that include surgical resection, radiation therapy or concurrent chemoradiation, targeted therapy and immunotherapy, SCCHN is still associated with a poor prognosis for patients with locally advanced or recurrent/metastatic (R/M) diseases. Although next-generation sequencing data from thousands of SCCHN patients have provided a comprehensive landscape of the somatic genomic alterations in this disease, genomic-based precision medicine is not implemented yet in routine clinical use since no satisfactory genetic biomarker has been identified for diagnosis, patient outcome prediction and selection of tailored therapeutic options. The lack of significant improvement in SCCHN patient survival over the last decades stresses the need for reliable predictive biomarkers and new therapeutic strategies for personalized clinical management of SCCHN patients. Targeting the SCCHN-associated microenvironment or the interaction of the latter with cancer cells may represent such paradigm shift in the development of new strategies to treat SCCHN patients, as exemplified by the recent implementation of immune checkpoint inhibitors to improve clinical outcomes by increasing anti-tumor immune responses in SCCHN patients. Several clinical trials are in progress in SCCHN patients to evaluate the activity of monoclonal antibodies and small-molecule inhibitors targeting the tumor microenvironment (TME) at different treatment settings, including combinations with adjuvant surgery, radiation therapy and chemotherapy. This review describes the current knowledge about the influence of the TME on intratumoral heterogeneity and clinical relapse in human SCCHN patients. More precisely, the role of hypoxia as well as the presence of non-cancer cells (e.g. cancer-associated fibroblasts and immune cells) on therapy response of SCCHN cells is highlighted. We also discuss relevant (pre)clinical models that may help integrate the microenvironment-tumor cell interplay in translational research studies for SCCHN. Finally, this review explores potential therapeutic strategies that may exploit the crosstalk between TME and SCCHN cells in order to implement fundamental changes in the tumor treatment paradigm of patients with locally advanced or R/M SCCHN.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Carcinoma, Squamous Cell/therapy , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/therapy , Humans , Immunotherapy , Precision Medicine , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/therapy , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...