Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Transfusion ; 61(8): 2468-2476, 2021 08.
Article in English | MEDLINE | ID: mdl-34110623

ABSTRACT

BACKGROUND: Although D variant phenotype is known to be due to genetic defects, including rare missense single nucleotide variants (SNVs), within the RHD gene, few studies have addressed the molecular and cellular mechanisms driving this altered expression. We and others showed previously that splicing is commonly disrupted by SNVs in constitutive splice sites and their vicinity. We thus sought to investigate whether rare missense SNVs located in "deep" exonic regions could also impair this mechanism. STUDY DESIGN AND METHODS: Forty-six missense SNVs reported within exons 6 and 7 were first selected from the Human RhesusBase. Their respective effect on splicing was assessed by using an in vitro assay. An RhD-negative cell model was further generated by using the CRISPR-Cas9 approach. RhD-mutated proteins were overexpressed in the newly created model, and cell membrane expression of the D antigen was measured by flow cytometry. RESULTS: Minigene splicing assay showed that 14 of 46 (30.4%) missense SNVs alter splicing. Very interestingly, further investigation of two missense SNVs, which both affect codon 338 and confer a weak D phenotype, showed various mechanisms: c.1012C>G (p.Leu338Val) disrupts splicing only, while c.1013T>C (p.Leu338Pro) alters only the protein structure, in agreement with in silico prediction tools and 3D protein structure visualization. CONCLUSION: Our functional data set suggests that missense SNVs damage quantitatively D antigen expression by, at least, two different mechanisms (splicing alteration and protein destabilization) that may act independently. These data thereby contribute to extend the current knowledge of the molecular mechanisms governing weakened D expression.


Subject(s)
Mutation, Missense , Polymorphism, Single Nucleotide , Rh-Hr Blood-Group System/genetics , Gene Expression , Humans , K562 Cells , Models, Molecular , RNA Splicing , Rh-Hr Blood-Group System/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...