Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 13(1): 1568, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35322017

ABSTRACT

Multilayered cuprates possess not only the highest superconducting temperature transition but also offer a unique platform to study disorder-free CuO2 planes and the interplay between competing orders with superconductivity. Here, we study the underdoped trilayer cuprate HgBa2Ca2Cu3O8+δ and we report quantum oscillation and Hall effect measurements in magnetic field up to 88 T. A careful analysis of the complex spectra of quantum oscillations strongly supports the coexistence of an antiferromagnetic order in the inner plane and a charge order in the outer planes. The presence of an ordered antiferromagnetic metallic state that extends deep in the superconducting phase is a key ingredient that supports magnetically mediated pairing interaction in cuprates.

2.
Nature ; 531(7593): 210-4, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26901870

ABSTRACT

The pseudogap is a partial gap in the electronic density of states that opens in the normal (non-superconducting) state of cuprate superconductors and whose origin is a long-standing puzzle. Its connection to the Mott insulator phase at low doping (hole concentration, p) remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate doping is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 tesla to show that Fermi-surface reconstruction by charge order in the cuprate YBa2Cu3Oy ends sharply at a critical doping p = 0.16 that is distinctly lower than the pseudogap critical point p* = 0.19 (ref. 11). This shows that the pseudogap and charge order are separate phenomena. We find that the change in carrier density n from n = 1 + p in the conventional metal at high doping (ref. 12) to n = p at low doping (ref. 13) starts at the pseudogap critical point. This shows that the pseudogap and the antiferromagnetic Mott insulator are linked.

3.
Nat Commun ; 6: 6034, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25616011

ABSTRACT

In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet, undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report evidence for a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency shows that it is a distinct Fermi surface, and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction by the charge-density-wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap.

4.
Nat Commun ; 5: 5679, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25477044

ABSTRACT

Fluctuations around an antiferromagnetic quantum critical point (QCP) are believed to lead to unconventional superconductivity and in some cases to high-temperature superconductivity. However, the exact mechanism by which this occurs remains poorly understood. The iron-pnictide superconductor BaFe2(As(1-x)P(x))2 is perhaps the clearest example to date of a high-temperature quantum critical superconductor, and so it is a particularly suitable system to study how the quantum critical fluctuations affect the superconducting state. Here we show that the proximity of the QCP yields unexpected anomalies in the superconducting critical fields. We find that both the lower and upper critical fields do not follow the behaviour, predicted by conventional theory, resulting from the observed mass enhancement near the QCP. Our results imply that the energy of superconducting vortices is enhanced, possibly due to a microscopic mixing of antiferromagnetism and superconductivity, suggesting that a highly unusual vortex state is realized in quantum critical superconductors.

5.
Phys Rev Lett ; 110(25): 257002, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23829753

ABSTRACT

We report a combined study of the specific heat and de Haas-van Alphen effect in the iron-pnictide superconductor BaFe2(As(1-x)P(x))2. Our data when combined with results for the magnetic penetration depth give compelling evidence for the existence of a quantum critical point close to x=0.30 which affects the majority of the Fermi surface by enhancing the quasiparticle mass. The results show that the sharp peak in the inverse superfluid density seen in this system results from a strong increase in the quasiparticle mass at the quantum critical point.

6.
Phys Rev Lett ; 108(4): 047002, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22400881

ABSTRACT

We report a de Haas-van Alphen oscillation study of the 111 iron pnictide superconductors LiFeAs with T(c) ≈ 18 K and LiFeP with T(c) ≈ 5 K. We find that for both compounds the Fermi surface topology is in good agreement with density functional band-structure calculations and has almost nested electron and hole bands. The effective masses generally show significant enhancement, up to ~3 for LiFeP and ~5 for LiFeAs. However, one hole Fermi surface in LiFeP shows a very small enhancement, as compared with its other sheets. This difference probably results from k-dependent coupling to spin fluctuations and may be the origin of the different nodal and nodeless superconducting gap structures in LiFeP and LiFeAs, respectively.

7.
Phys Rev Lett ; 104(5): 057008, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-20366792

ABSTRACT

Using the de Haas-van Alphen effect we have measured the evolution of the Fermi surface of BaFe2(As1-xPx){2} as a function of isoelectric substitution (As/P) for 0.41

SELECTION OF CITATIONS
SEARCH DETAIL