Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Omics ; 20(8): 524-531, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39162257

ABSTRACT

The basidiomycete fungus Leucoagaricus gongylophorus is able to grow in the fungus garden of leaf-cutter ants. This mutualistic interaction has driven the evolutionary adaptation of L. gongylophorus, shaping its metabolism to produce enzymes adept at lignocellulosic biomass degradation. In this study, we undertook the comprehensive sequencing, assembly, and functional annotation of the genome of L. gongylophorus strain LEU18496, mutualistic fungus of the Atta mexicana. Our genomic analyses revealed a distinctive bimodal nature to the genome: a predominant region characterized by AT enrichment and low genetic density, alongside a smaller region exhibiting higher GC content and higher genetic density. The presence of transposable elements (TEs) within the AT-enriched region suggests genomic compartmentalization, facilitating differential evolutionary rates. With a gene count of 6748, the assembled genome of L. gongylophorus LEU18496 surpasses previous reports for this fungal species. Inspection of genes associated with central metabolism unveiled a remarkable abundance of carbohydrate-active enzymes (CAZymes) and fungal oxidative lignin enzymes (FOLymes), underscoring their pivotal roles in the life cycle of this fungus.


Subject(s)
Genome, Fungal , Molecular Sequence Annotation , Symbiosis , Symbiosis/genetics , Animals , Genomics/methods , DNA Transposable Elements/genetics , Agaricales/genetics , Base Composition , Phylogeny , Ants/genetics , Ants/microbiology , Basidiomycota/genetics
2.
Article in English | MEDLINE | ID: mdl-38558275

ABSTRACT

Bacterial cellulose (BC) is an emerging material for high-end applications due to its biocompatibility and physicochemical characteristics. However, the scale-up production of this material is still expensive, with the culture medium constituting one-third of the total cost. Herein, four different media (yeast nitrogen base, YNB; Murashige and Skoog, MSO; black tea; and NPK fertilizer solution) were compared while using sucrose as an additional carbon source. The yields of BC were best for YNB and fertilizer with 0.37 and 0.34 gBC/gC respectively. These two were then compared using glucose as a carbon source, with improvements in the production of 29% for the fertilizer, while only an 8% increase for YNB was seen; however, as the carbon concentration increased with a fixed N concentration, the yield was lower but the rate of production of BC increased. The obtained BC films were sanitized and showed low molecular weight and all the expected cellulose characteristic FT-IR bands while SEM showed nanofibers around 0.1 µm. Compared to traditional methods for lab-scale production, the use of the fertilizer and the consortium represent benefits compared to traditional lab-scale BC culture methods such as a competitive cost (two times lower) while posing resilience and tolerance to stress conditions given that it is produced by microbial communities and not with a single strain. Additionally, the low molecular weight of the films could be of interest for certain coating formulations.

3.
Appl Biochem Biotechnol ; 195(7): 4321-4335, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36689159

ABSTRACT

Suitability of microalgae valorization mainly depends on its biochemical composition. Overall, among all microalgal derivatives, pigments currently stand out as the major added-value component. While it is well recognized that microalgal growth conditions strongly affect biomass composition, final tuning of already grown microalgae has been scarcely studied. Herein, pigment crude extract and debris biomass composition of an already grown microalgal consortium was evaluated after a short-term exposure (90 min) to different levels of irradiance (15, 50, 120 µmol m-2 s-1) and sulfide concentrations (0, 3.2, 16 mg L-1). Although lipid, protein, and carbohydrate contents of debris biomass were not decisively modified by the short-term exposures, pigments content of the crude extracts were strongly modified after 90-min exposure at given sulfide and irradiance conditions. Particularly, a higher content of chlorophyll a, chlorophyll b, and total carotenoids was estimated at an optimal sulfide concentration of 5 mg L-1, and the higher irradiance of 120 µmol m-2 s-1. Contrarily, the average irradiation level of 50 µmol m-2 s-1 and the absence of sulfide stimulated the production of phycoerythrin and phycocyanin which could be increased by 65 and 50%, respectively. Thus, a final qualitative and quantitative tuning of pigment content is plainly achievable on grown microalgal biomass, in a reduced exposure time, at given irradiance or sulfide conditions.


Subject(s)
Microalgae , Chlorophyll A/metabolism , Microalgae/metabolism , Phycoerythrin , Phycocyanin , Carotenoids/metabolism , Biomass
4.
Bioresour Technol ; 369: 128431, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36470497

ABSTRACT

A native cyanobacterial strain, Desertifilum tharense UAM-C/S02, was studied as a possible C-phycocyanin (C-PC) producer. Photosynthetic activity (PA) assays through oxygen production determined the proper temperature and range of irradiances to be tested in a stirred tank photobioreactor. The highest C-PC productivity (97 mg L-1 d-1), with a yield of 86.46 mgC-PC gB-1 was obtained at 730 µmol photons m-2 s-1 with a biomass productivity of 608 mg L-1 d-1 and the CO2 fixation rate was 1,194  mg L-1 d-1. The 1.81 crude extract purity value is the highest reported for this genus, which was improved to biomarker-grade purity after a two-step purification strategy comprising precipitation with ammonium sulfate, followed by dialysis. The purified C-PC was almost entirely radical-free using 1 mg mL-1, which validates its potential use in therapeutic formulations.


Subject(s)
Antioxidants , Phycocyanin , Renal Dialysis , Fresh Water
5.
Microorganisms ; 10(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36557605

ABSTRACT

The genera Bacillus belongs to the group of microorganisms that are known as plant growth-promoting bacteria, their metabolism has evolved to produce molecules that benefit the growth of the plant, and the production of 3-indole acetic acid (IAA) is part of its secondary metabolism. In this work, Bacillus subtilis was cultivated in a bioreactor to produce IAA using propionate and glucose as carbon sources in an M9-modified media; in both cases, tryptophan was added as a co-substrate. The yield of IAA using propionate is 17% higher compared to glucose. After 48 h of cultivation, the final concentration was 310 mg IAA/L using propionate and 230 mg IAA/L using glucose, with a concentration of 500 mg Trp/L. To gain more insight into propionate metabolism and its advantages, the genome-scale metabolic model of B. subtilis (iBSU 1147) and computational analysis were used to calculate flux distribution and evaluate the metabolic capabilities to produce IAA using propionate. The metabolic fluxes demonstrate that propionate uptake favors the production of precursors needed for the synthesis of the hormone, and the sensitivity analysis shows that the control of a specific growth rate has a positive impact on the production of IAA.

6.
Bioresour Technol ; 337: 125508, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34320776

ABSTRACT

The photoautotrophic poly(3-hydroxybutyrate) (PHB) production by cyanobacteria is an attractive option as it only requires CO2 and light. In this work, a new wild-type strain producing PHB, Synechococcus elongatus UAM-C/S03, was identified using a polyphasic approach. The strain was cultured in a photobioreactor operated under N-sufficiency conditions at different pH values (7 to 11) and fed with CO2 on demand. We also evaluated the production of PHB under N-starving conditions. Highest biomass productivity, 324 mg L-1 d-1, and CO2 capture, 674 mg L-1 d-1, were obtained at pH 7 and under N-sufficiency conditions. The strain accumulated 29.42% of PHB in dry cell weight (DCW) under N-starvation conditions without pH control, and highest PHB productivity was 58.10 mg L-1 d-1. The highest carbohydrate content registered at pH 8, 50.84% in DCW, along with a release of carbon-based organic compounds, suggested the presence of exopolysaccharides in the culture medium.


Subject(s)
Hydroxybutyrates , Synechococcus , 3-Hydroxybutyric Acid , Extreme Environments , Polyesters
7.
Mol Omics ; 17(4): 554-564, 2021 08 09.
Article in English | MEDLINE | ID: mdl-33972977

ABSTRACT

3-Indoleacetic acid (IAA) is a phytohormone that promotes plant root growth, improving the use of nutrients and crop yield and it is been reported that bacteria of the genus Bacillus are capable of producing this phytohormone under various growth conditions. Considering this metabolic capability, in this work, Bacillus subtilis was cultivated in five different carbon sources: glucose, acetate, propionate, citrate and glycerol; and l-tryptophan (Trp) was used as an inducer for the IAA production. Based on the experimental results it was observed that the highest growth rate was achieved using glucose as a carbon source (µ = 0.12 h-1) and the lowest value was for citrate (µ = 0.08 h-1). On the other hand, the highest IAA production was obtained using propionate Yp/s = 0.975 (gIAA gTrp-1) and the lowest was when glucose was the substrate Yp/s = 0.803 (gIAA gTrp-1). In order to explore the metabolism and understand these differences, the experimental data was used to calculate the flux distribution using the genomic-scale metabolic model of Bacillus subtilis. Performing a comparative analysis it is observed that the fluxes towards precursors increase when propionate is the carbon source.


Subject(s)
Bacillus subtilis , Carbon , Indoleacetic Acids , Propionates
8.
Biotechnol Lett ; 43(4): 845-854, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33389270

ABSTRACT

The aim of this study was to characterize the growth of the fungus Leucoagaricus gongylophorus LEU18496, isolated from the fungus garden of the nest of leaf cutter ants Atta mexicana. The fungus garden was cultivated in an artificial laboratory nest and the fungus further grown in submerged (SmC) and solid state (SSC) cultures with sugarcane bagasse, grass or model substrates containing CM-cellulose, xylan or lignin. The CO2 production rate with grass in SmC (Vmax 34.76 mg CO2 Lgas-1 day- 1) was almost four times than SSC (Vmax 9.49 mg CO2 Lgas-1 day- 1), while the production rate obtained in sugarcane bagasse in SmC (Vmax 16.02 mg CO2 Lgas-1 day- 1) was almost three times than that for SSC (Vmax 5.42 mg CO2 Lgas-1 day- 1). In addition, the fungus grew with defined carbon substrates mixtures in SmC, but at different rates, first xylan, followed by CM-cellulose and lignin. Endoglucanase and xylanase activities (U mgprotein-1) were detected in all cultures, the specific activity was higher in the fungus-garden, 5.2 and 1.8; followed by SSC-grass, 1.5 and 0.8, and SSC-bagasse, 0.9 and 0.8, respectively. Laccase activity in the fungus-garden was 44.8 U L- 1 and 10.9 U L- 1 in the SSC-grass. The gongylidia structures observed by environmental scanning electron microscopy were ca. 40 µm and the hyphae width ca. 5 µm. The results show that L. gongylophorus from A. mexicana have promising applications for the treatment of plant residues to release fermentable sugars and the production of high value lignocellulolytic enzymes such as endoglucanase, xylanase or laccases.


Subject(s)
Agaricales/growth & development , Ants/microbiology , Cellulase/metabolism , Endo-1,4-beta Xylanases/metabolism , Lignin/metabolism , Agaricales/enzymology , Agaricales/isolation & purification , Animals , Cellulose/chemistry , Chromatography, Gas , Fermentation , Fungal Proteins/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Microscopy, Electron, Scanning , Plant Leaves/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL