Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 8(40): 36919-36932, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37841139

ABSTRACT

Bioactive silicates have gained popularity as bone graft substitutes in recent years due to their exceptional ability to bind to host tissues. The current study investigates the effect of changing the metal ion-to-fuel ratio on the properties and biological activity of monticellite prepared via the sol-gel connived combustion technique. Single-phasic monticellite was obtained at 900 °C, without any secondary-phase contaminants for the fuel-lean, stoichiometric, and fuel-rich conditions. SEM and TEM micrographs revealed the porous, spongy morphology of the materials. Because of the reduced crystallite size and higher surface area, the biomineralization of monticellite prepared under fuel-lean conditions resulted in more apatite deposition than those of the other two samples. The results show that the material has a good compressive strength comparable to natural bone, while its brittleness is equivalent to the lower moduli of bone. In terms of antibacterial and antifungal activities, the monticellite bioceramics outperformed the clinical pathogens. It can be used for bone tissue engineering and other biological applications due to its excellent anti-inflammatory and hemolysis inhibitory properties.

2.
Sci Rep ; 13(1): 3615, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36869055

ABSTRACT

The current investigation deals with the simple and ecological synthesis of CaO, MgO, CaTiO3, and MgTiO3 for the photocatalytic dilapidation of rhodamine B dye. CaO was procured from chicken eggshell waste by calcination process, while MgO was produced by solution combustion method using urea as a fuel source. Furthermore, CaTiO3 and MgTiO3 were synthesized through an easy and simple solid-state method by mixing thoroughly the synthesized CaO or MgO with TiO2 before calcination at 900 °C. XRD and EDX investigations confirmed the phase formation of the materials. Moreover, FTIR spectra revealed the existence of Ca-Ti-O, Mg-Ti-O, and Ti-O which resembles the chemical composition of the proposed materials. SEM micrographs revealed that the surface of CaTiO3 is rougher with relatively dispersed particles compared to MgTiO3, reflecting a higher surface area of CaTiO3. Diffuse reflectance spectroscopy investigations indicated that the synthesized materials can act as photocatalysts under UV illumination. Accordingly, CaO and CaTiO3 effectively degraded rhodamine B dye within 120 min with a photodegradation activity of 63% and 72%, respectively. In contrast, the photocatalytic degradation activity of MgO and MgTiO3 was much lower, since only 21.39 and 29.44% of the dye were degraded, respectively after 120 min of irradiation. Furtheremore, the photocatalytic activity of the mixture from both Ca and Mg titanates was 64.63%. These findings might be valuable for designing potential and affordable photocatalysts for wastewater purification.

SELECTION OF CITATIONS
SEARCH DETAIL