Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Evolution ; 78(4): 701-715, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38252792

ABSTRACT

Mountain ranges are hotspots of biodiversity. However, the mechanisms that generate biodiversity patterns in different mountainous regions and taxa are not apparent. The Western Ghats (WG) escarpment in India is a globally recognized biodiversity hotspot with high species richness and endemism. Most studies have either invoked paleoclimatic conditions or climatic stability in the southern WG refugium to explain this high diversity and endemism. However, the factors driving macroevolutionary change remain unexplored for most taxa. Here, we generated the most comprehensive dated phylogeny to date for ranoid frogs in the WG and tested the role of paleoclimatic events or climatic stability in influencing frog diversification. We found that the diversity of different ranoid frog clades in the WG either accumulated at a constant rate through time or underwent a decrease in speciation rates around 3-2.5 Ma during the Pleistocene glaciation cycles. We also find no significant difference in diversification rate estimates across elevational gradients and the three broad biogeographic zones in the WG (northern, central, and southern WG). However, time-for-speciation explained regional species richness within clades, wherein older lineages have more extant species diversity. Overall, we find that global paleoclimatic events have had little impact on WG frog diversification throughout most of its early history until the Quaternary and that the WG may have been climatically stable allowing lineages to accumulate and persist over evolutionary time.


Subject(s)
Biological Evolution , Genetic Speciation , Animals , Phylogeny , Anura/genetics , Biodiversity
2.
Mol Phylogenet Evol ; 165: 107300, 2021 12.
Article in English | MEDLINE | ID: mdl-34474153

ABSTRACT

In widespread species, the diverse ecological conditions in which the populations occur, and the presence of many potential geographical barriers through their range are expected to have created ample opportunities for the evolution of distinct, often cryptic lineages. In this work, we tested for species boundaries in one such widespread species, the king cobra, Ophiophagus hannah (Cantor, 1836), a largely tropical elapid snake distributed across the Oriental realm. Based on extensive geographical sampling across most of the range of the species, we initially tested for candidate species (CS) using Maximum-Likelihood analysis of mitochondrial genes. We then tested the resulting CS using both morphological data and sequences of three single-copy nuclear genes. We used snapclust to determine the optimal number of clusters in the nuclear dataset, and Bayesian Phylogenetics and Phylogeography (BPP) to test for likely species status. We used non-metric multidimensional scaling (nMDS) analysis for discerning morphological separation. We recovered four independently evolving, geographically separated lineages that we consider Confirmed Candidate Species: (1) Western Ghats lineage; (2) Indo-Chinese lineage (3) Indo-Malayan lineage; (4) Luzon Island lineage, in the Philippine Archipelago. We discuss patterns of lineage divergence, particularly in the context of low morphological divergence, and the conservation implications of recognizing several endemic king cobra lineages.


Subject(s)
DNA , Ophiophagus hannah , Animals , Bayes Theorem , Philippines , Phylogeny , Pyridazines
3.
PLoS One ; 15(9): e0237431, 2020.
Article in English | MEDLINE | ID: mdl-32877402

ABSTRACT

A large number of species in the tropics are awaiting discovery, many due to their cryptic morphology ie. lack of discernable morphological difference. We explored the presence of cryptic lineages within the frog genera, Indirana and Walkerana, which are endemic to the Western Ghats of Peninsular India. By reconstructing a phylogeny using 5 genes and robust geographic sampling, we delimited 19 lineages along a population-species continuum, using multiple criteria including haplotype clusters, genetic distance, morphological distinctness, and geographical separation. Of these 19 lineages, 14 belonged to the genus Indirana and 5 to the genus Walkerana. Divergence dating analyses revealed that the clade comprising Indirana and Walkerana began diversifying around 71 mya and the most recent common ancestor of Indirana and Walkerana split around 43 mya. We tested for the presence of cryptic lineages by examining the relationship between genetic and morphological divergence among related pairs within a pool of 15 lineages. The pairs showed strong morphological conservatism across varying levels of genetic divergence. Our results highlight the prevalence of morphologically cryptic lineages in these ancient endemic clades of the Western Ghats. This emphasizes the significance of other axes, such as geography, in species delimitation. With increasing threats to amphibian habitats, it is imperative that cryptic lineages are identified so that appropriate conservation measures can be implemented.


Subject(s)
Anura/classification , Biodiversity , Animals , Bayes Theorem , Calibration , Geography , Phylogeny , Probability , Time Factors
4.
Zootaxa ; 4729(2): zootaxa.4729.2.7, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-32229864

ABSTRACT

The frog family Ranixalidae is endemic to the Western Ghats of Peninsular India and contains two genera, Indirana and Walkerana. The three known species of Walkerana are restricted to different hill ranges south of the Palghat Gap, an ancient valley in the Western Ghats. In this study, we report the discovery of a deeply divergent lineage of Walkerana from the high elevations of the Elivalmalai hill range. This finding extends the geographic range of the Walkerana clade to the north of the Palghat Gap. The new species Walkerana muduga sp. nov. is genetically and morphologically divergent, and geographically isolated from its sister lineages. We also recovered a potential new lineage in the adjoining hill ranges suggesting the presence of additional new species in this genus north of the Palghat Gap.


Subject(s)
Anura , Animals , India , Phylogeny
5.
PLoS One ; 14(7): e0218851, 2019.
Article in English | MEDLINE | ID: mdl-31314800

ABSTRACT

The Western Ghats are well known as a biodiversity hotspot, but the full extent of its snake diversity is yet to be uncovered. Here, we describe a new genus and species of vine snake Proahaetulla antiqua gen. et sp. nov., from the Agasthyamalai hills in the southern Western Ghats. It was found to be a member of the Ahaetuliinae clade, which currently comprises the arboreal snake genera Ahaetulla, Dryophiops, Dendrelaphis and Chrysopelea, distributed in South and Southeast Asia. Proahaetulla shows a sister relationship with all currently known taxa belonging to the genus Ahaetulla, and shares ancestry with Dryophiops. In addition to its phylogenetic position and significant genetic divergence, this new taxon is also different in morphology from members of Ahaetuliinae in a combination of characters, having 12-13 partially serrated keels on the dorsal scale rows, 20 maxillary teeth and 3 postocular scales. Divergence dating reveals that the new genus is ancient, dating back to the Mid-Oligocene, and is one of the oldest persisting monotypic lineages of snakes in the Western Ghats. This discovery adds to the growing list of ancient lineages endemic to the Agasthyamalai hills and underscores the biogeographic significance of this isolated massif in the southern Western Ghats.


Subject(s)
Biodiversity , Colubridae/physiology , Phylogeny , Snakes/physiology , Animals , Colubridae/classification , Colubridae/genetics , Dental Arch/physiology , Genetic Drift , Genetic Speciation , India , Snakes/classification , Snakes/genetics
6.
Zootaxa ; 4482(3): 401-450, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30313808

ABSTRACT

Lizards of the genus Calotes are geographically restricted to South Asia, Indo-China and parts of Southeast Asia. The greatest diversity of the genus is from the biodiversity hotspots in South Asia: Western Ghats (Peninsular India), Sri Lanka and Indo-Burma. Here, we present a systematic revision of members of the genus Calotes from Peninsular India using a combination of molecular phylogeny, geographical distribution and morphological characters. We show that Calotes from the Western Ghats is paraphyletic and consists of three major clades, one of which is widely distributed in South and Southeast (SE) Asia, while the others are restricted to Peninsular India. The Peninsular Indian clade is composed of two sister clades: Psammophilus, with a wider distribution and a second clade, composed of two extant species, Calotes rouxii and Calotes ellioti and two new species, all restricted to the Western Ghats region. Based on morphological differences, we retain the generic status of Psammophilus and assign its sister clade to a new genus Monilesaurus gen. nov. and transfer the following species, C. rouxii and C. ellioti, to this new genus. We also provide diagnoses and descriptions for two new species recognized within Monilesaurus gen. nov. In addition, Calotes aurantolabium from the Western Ghats was observed to be deeply divergent and to share a sister-relationship with the clade composed of Calotes, Monilesaurus gen. nov., and Psammophilus. Based on its phylogenetic position and morphological attributes, we assign this species to a new genus Microauris gen. nov. These new discoveries highlight the evolutionary significance of the Western Ghats in housing novel lizard diversity.


Subject(s)
Lizards , Phylogeny , Animals , China , India , Myanmar , Sri Lanka
7.
J Genet ; 96(3): 413-430, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28761006

ABSTRACT

The history of ecology and evolutionary biology is rife with attempts to define and delimit species. However, there has been confusion between concepts and criteria, which has led to discussion, debate, and conflict, eventually leading to lack of consistency in delimitation. Here, we provide a broad review of species concepts, a clarification of category versus concept, an account of the general lineage concept (GLC), and finally a way forward for species discovery and delimitation. Historically, species were considered as varieties bound together by reproduction. After over 200 years of uncertainty, Mayr attempted to bring coherence to the definition of species through the biological species concept (BSC). This has, however, received much criticism, and the last half century has spawned at least 20 other concepts. A central philosophical problem is that concepts treat species as 'individuals' while the criteria for categorization treats them as 'classes'. While not getting away from this problem entirely, the GLC attempts to provide a framework where lineage divergence is influenced by a number of different factors (and correlated to different traits) which relate to the different species concepts. We also introduce an 'inclusive' probabilistic approach for understanding and delimiting species. Finally, we provide aWallacean (geography related) approach to the Linnaean problem of identifying and delimiting species, particularly for cases of allopatric divergence, and map this to the GLC. Going one step further, we take a morphometric terrain approach to visualizing and understanding differences between lineages. In summary, we argue that while generalized frameworks may work well for concepts of what species are, plurality and 'inclusive' probabilistic approaches may work best for delimitation.


Subject(s)
DNA, Mitochondrial/genetics , Genes, Mitochondrial/genetics , Haplotypes , Phylogeny , Animals , DNA, Mitochondrial/classification , Genetic Variation , Humans , Phenotype , Reproduction/genetics , Species Specificity
8.
Proc Biol Sci ; 283(1836)2016 Aug 17.
Article in English | MEDLINE | ID: mdl-27534957

ABSTRACT

The historical processes underlying high diversity in tropical biodiversity hotspots like the Western Ghats of Peninsular India remain poorly understood. We sampled bush frogs on 13 massifs across the Western Ghats Escarpment and examined the relative influence of Quaternary glaciations, ecological gradients and geological processes on the spatial patterns of lineage and clade diversification. The results reveal a large in situ radiation (more than 60 lineages), exhibiting geographical structure and clade-level endemism, with two deeply divergent sister clades, North and South, highlighting the biogeographic significance of an ancient valley, the Palghat Gap. A majority of the bush frog sister lineages were isolated on adjacent massifs, and signatures of range stasis provide support for the dominance of geological processes in allopatric speciation. In situ diversification events within the montane zones (more than 1800 m) of the two highest massifs suggest a role for climate-mediated forest-grassland persistence. Independent transitions along elevational gradients among sub-clades during the Miocene point to diversification along the elevational gradient. The study highlights the evolutionary significance of massifs in the Western Ghats with the high elevations acting as centres of lineage diversification and the low- and mid-elevations of the southern regions, with deeply divergent lineages, serving as museums.


Subject(s)
Biodiversity , Genetic Speciation , Phylogeny , Ranidae/classification , Animals , Geography , Ice Cover , India
10.
Zootaxa ; 3999: 79-94, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26250327

ABSTRACT

We carried out a large-scale phylogenetic analysis of fejervaryan (dicroglossid frogs with 'Fejervaryan lines' on the ventral side of the body) frogs, distributed in South and SE Asia, using published and newly generated sequences of unidentified individuals from the northern Western Ghats. The results corroborate the presence of a larger fejervaryan clade with a sister relationship to a clade composed of Sphaerotheca. Two sister clades could be discerned within the lager fejervaryan clade. The unidentified individuals formed a monophyletic group and showed a strong support for a sister relationship with Minervarya sahyadris. The species was found to be highly divergent (16S rRNA-4% and tyr-1%) from its sister lineage Minervarya sahyadris, and the clade composed of these two lineages were found to be deeply nested within the larger clade of Fejervarya. Based on this, the genus Minervarya Dubois, Ohler and Biju, 2001 is synonymized under the genus Fejervarya Bolkay, 1915. The unidentified lineage is recognized, based on phylogenetic position, genetic divergence and morphological divergence, as a distinct species and named here as Fejervarya gomantaki sp. nov. The presence of rictal glands was observed to be a synapomorphic character shared by the nested clade members, Fejervarya sahyadris and Fejervarya gomantaki sp. nov. Based on the presence of rictal gland and small size, Minervarya chilapata, a species from a lowland region in the Eastern Himalayas, is synonymized under Fejervarya and evidence for morphological separation from the new species, Fejervarya gomantaki sp. nov. is provided. For fejervaryan frogs, three generic names (Frost, 2015) are currently in use for two phylogenetic subclades; the genus Fejervarya Bolkay, 1915 for species distributed in South East Asia; the genus Zakerana Howlader, 2011 for species distributed in South Asia and the genus Minervarya Dubois, Ohler and Biju, 2001 nested within the 'Zakerana clade'. In the phylogenetic analysis Minervarya sahyadris and the new species described herein as Fejervarya gomantaki sp. nov. are nested within the 'Zakerana clade'. If the 'Zakerana clade' for the fejervaryan frogs distributed in South Asia is assigned a generic status, the nomen 'Minervarya' should be used as per the principle of priority of the ICZN Code. Taking into consideration the overlapping distribution ranges of members of the sister clades within the larger fejervaryan clade and the absence of distinct morphological characteristics, we also synonymize the genus Zakerana Howlader, 2011, a name assigned to one of the sister clades with members predominantly distributed in South Asia, under the genus Fejervarya Bolkay, 1915. We discuss the need for additional sampling to identify additional taxa and determine the geographical ranges of the members of the sister clades within Fejervarya to resolve taxonomy within this group. [Corrected]


Subject(s)
Anura/classification , Phylogeny , Animal Distribution , Animals , Anura/genetics , Female , India , Male , RNA, Ribosomal, 16S/genetics , Species Specificity
11.
Zootaxa ; 3893(4): 451-88, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25544534

ABSTRACT

Bush frogs of the genus Raorchestes are distributed mainly in the Western Ghats Escarpment of Peninsular India. The inventory of species in this genus is incomplete and there is ambiguity in the systematic status of species recognized by morphological criteria. To address the dual problem of taxon sampling and systematic uncertainty in bush frogs, we used a large-scale spatial sampling design, explicitly incorporating the geographic and ecological heterogeneity of the Western Ghats. We then used a hierarchical multi-criteria approach by combining mitochondrial phylogeny, genetic distance, geographic range, morphology and advertisement call to delimit bush frog lineages. Our analyses revealed the existence of a large number of new lineages with varying levels of genetic divergence. Here, we provide diagnoses and descriptions for nine lineages that exhibit divergence across multiple axes. The discovery of new lineages that exhibit high divergence across wide ranges of elevation and across the major massifs highlights the large gaps in historical sampling. These discoveries underscore the significance of addressing inadequate knowledge of species distribution, namely the "Wallacean shortfall", in addressing the problem of taxon sampling and unknown diversity in tropical hotspots. A biogeographically informed sampling and analytical approach was critical in detecting and delineating lineages in a consistent manner across the genus. Through increased taxon sampling, we were also able to discern a number of well-supported sub-clades that were either unresolved or absent in earlier phylogenetic reconstructions and identify a number of shallow divergent lineages which require further examination for assessment of their taxonomic status. 


Subject(s)
Anura/classification , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Anura/anatomy & histology , Anura/genetics , Anura/growth & development , Body Size , Ecosystem , Female , India , Male , Molecular Sequence Data , Organ Size , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL