Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 5109, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877019

ABSTRACT

Positron emission tomography (PET) imaging of tau aggregation in Alzheimer's disease (AD) is helping to map and quantify the in vivo progression of AD pathology. To date, no high-affinity tau-PET radiopharmaceutical has been optimized for imaging non-AD tauopathies. Here we show the properties of analogues of a first-in-class 4R-tau lead, [18F]OXD-2115, using ligand-based design. Over 150 analogues of OXD-2115 were synthesized and screened in post-mortem brain tissue for tau affinity against [3H]OXD-2115, and in silico models were used to predict brain uptake. [18F]OXD-2314 was identified as a selective, high-affinity non-AD tau PET radiotracer with favorable brain uptake, dosimetry, and radiometabolite profiles in rats and non-human primate and is being translated for first-in-human PET studies.


Subject(s)
Alzheimer Disease , Brain , Fluorine Radioisotopes , Positron-Emission Tomography , Radiopharmaceuticals , Tauopathies , tau Proteins , Positron-Emission Tomography/methods , Animals , Humans , Tauopathies/diagnostic imaging , Tauopathies/metabolism , Brain/diagnostic imaging , Brain/metabolism , Ligands , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Rats , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Fluorine Radioisotopes/chemistry , tau Proteins/metabolism , Male
2.
Mol Oncol ; 18(8): 1904-1922, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38506049

ABSTRACT

An immunosuppressive tumor microenvironment promotes tumor growth and is one of the main factors limiting the response to cancer immunotherapy. We have previously reported that inhibition of vacuolar protein sorting 34 (VPS34), a crucial lipid kinase in the autophagy/endosomal trafficking pathway, decreases tumor growth in several cancer models, increases infiltration of immune cells and sensitizes tumors to anti-programmed cell death protein 1/programmed cell death 1 ligand 1 therapy by upregulation of C-C motif chemokine 5 (CCL5) and C-X-C motif chemokine 10 (CXCL10) chemokines. The purpose of this study was to investigate the signaling mechanism leading to the VPS34-dependent chemokine increase. NanoString gene expression analysis was applied to tumors from mice treated with the VPS34 inhibitor SB02024 to identify key pathways involved in the anti-tumor response. We showed that VPS34 inhibitors increased the secretion of T-cell-recruitment chemokines in a cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING)-dependent manner in cancer cells. Both pharmacological and small interfering RNA (siRNA)-mediated VPS34 inhibition increased cGAS/STING-mediated expression and secretion of CCL5 and CXCL10. The combination of VPS34 inhibitor and STING agonist further induced cytokine release in both human and murine cancer cells as well as monocytic or dendritic innate immune cells. Finally, the VPS34 inhibitor SB02024 sensitized B16-F10 tumor-bearing mice to STING agonist treatment and significantly improved mice survival. These results show that VPS34 inhibition augments the cGAS/STING pathway, leading to greater tumor control through immune-mediated mechanisms. We propose that pharmacological VPS34 inhibition may synergize with emerging therapies targeting the cGAS/STING pathway.


Subject(s)
Class III Phosphatidylinositol 3-Kinases , Interferon Type I , Membrane Proteins , Signal Transduction , Animals , Membrane Proteins/metabolism , Membrane Proteins/agonists , Class III Phosphatidylinositol 3-Kinases/metabolism , Humans , Signal Transduction/drug effects , Mice , Cell Line, Tumor , Interferon Type I/metabolism , Nucleotidyltransferases/metabolism , Mice, Inbred C57BL , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
3.
Sci Adv ; 6(18): eaax7881, 2020 05.
Article in English | MEDLINE | ID: mdl-32494661

ABSTRACT

One of the major challenges limiting the efficacy of anti-PD-1/PD-L1 therapy in nonresponding patients is the failure of T cells to penetrate the tumor microenvironment. We showed that genetic or pharmacological inhibition of Vps34 kinase activity using SB02024 or SAR405 (Vps34i) decreased the tumor growth and improved mice survival in multiple tumor models by inducing an infiltration of NK, CD8+, and CD4+ T effector cells in melanoma and CRC tumors. Such infiltration resulted in the establishment of a T cell-inflamed tumor microenvironment, characterized by the up-regulation of pro-inflammatory chemokines and cytokines, CCL5, CXCL10, and IFNγ. Vps34i treatment induced STAT1 and IRF7, involved in the up-regulation of CCL5 and CXCL10. Combining Vps34i improved the therapeutic benefit of anti-PD-L1/PD-1 in melanoma and CRC and prolonged mice survival. Our study revealed that targeting Vps34 turns cold into hot inflamed tumors, thus enhancing the efficacy of anti-PD-L1/PD-1 blockade.

4.
Cancer Lett ; 435: 32-43, 2018 10 28.
Article in English | MEDLINE | ID: mdl-30055290

ABSTRACT

Resistance to chemotherapy is a challenging problem for treatment of cancer patients and autophagy has been shown to mediate development of resistance. In this study we systematically screened a library of 306 known anti-cancer drugs for their ability to induce autophagy using a cell-based assay. 114 of the drugs were classified as autophagy inducers; for 16 drugs, the cytotoxicity was potentiated by siRNA-mediated knock-down of Atg7 and Vps34. These drugs were further evaluated in breast cancer cell lines for autophagy induction, and two tyrosine kinase inhibitors, Sunitinib and Erlotinib, were selected for further studies. For the pharmacological inhibition of autophagy, we have characterized here a novel highly potent selective inhibitor of Vps34, SB02024. SB02024 blocked autophagy in vitro and reduced xenograft growth of two breast cancer cell lines, MDA-MB-231 and MCF-7, in vivo. Vps34 inhibitor significantly potentiated cytotoxicity of Sunitinib and Erlotinib in MCF-7 and MDA-MB-231 in vitro in monolayer cultures and when grown as multicellular spheroids. Our data suggests that inhibition of autophagy significantly improves sensitivity to Sunitinib and Erlotinib and that Vps34 is a promising therapeutic target for combination strategies in breast cancer.


Subject(s)
Autophagy/drug effects , Breast Neoplasms/drug therapy , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Xenograft Model Antitumor Assays/methods , Animals , Apoptosis/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Class III Phosphatidylinositol 3-Kinases/metabolism , Drug Screening Assays, Antitumor/methods , Humans , MCF-7 Cells , Mice, Inbred NOD , Mice, SCID , Protein Kinase Inhibitors/pharmacology , Sunitinib/pharmacology
5.
J Med Chem ; 61(6): 2533-2551, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29485874

ABSTRACT

Recent literature has both suggested and questioned MTH1 as a novel cancer target. BAY-707 was just published as a target validation small molecule probe for assessing the effects of pharmacological inhibition of MTH1 on tumor cell survival, both in vitro and in vivo. (1) In this report, we describe the medicinal chemistry program creating BAY-707, where fragment-based methods were used to develop a series of highly potent and selective MTH1 inhibitors. Using structure-based drug design and rational medicinal chemistry approaches, the potency was increased over 10,000 times from the fragment starting point while maintaining high ligand efficiency and drug-like properties.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Repair Enzymes/antagonists & inhibitors , Morpholines/pharmacology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Caco-2 Cells , Cell Membrane Permeability , Drug Design , Drug Discovery , Drug Evaluation, Preclinical , Hepatocytes/metabolism , Humans , Mice , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Morpholines/chemistry , Morpholines/pharmacokinetics , Rats , Rats, Wistar , Structure-Activity Relationship
6.
ACS Chem Biol ; 12(8): 1986-1992, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28679043

ABSTRACT

MTH1 is a hydrolase responsible for sanitization of oxidized purine nucleoside triphosphates to prevent their incorporation into replicating DNA. Early tool compounds published in the literature inhibited the enzymatic activity of MTH1 and subsequently induced cancer cell death; however recent studies have questioned the reported link between these two events. Therefore, it is important to validate MTH1 as a cancer dependency with high quality chemical probes. Here, we present BAY-707, a substrate-competitive, highly potent and selective inhibitor of MTH1, chemically distinct compared to those previously published. Despite superior cellular target engagement and pharmacokinetic properties, inhibition of MTH1 with BAY-707 resulted in a clear lack of in vitro or in vivo anticancer efficacy either in mono- or in combination therapies. Therefore, we conclude that MTH1 is dispensable for cancer cell survival.


Subject(s)
DNA Repair Enzymes/metabolism , Drug Delivery Systems , Morpholines/pharmacology , Neoplasms/drug therapy , Neoplasms/enzymology , Phosphoric Monoester Hydrolases/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Caco-2 Cells , Cells, Cultured , DNA Repair Enzymes/antagonists & inhibitors , Enzyme Activation/drug effects , HeLa Cells , Hepatocytes/drug effects , Humans , MCF-7 Cells , Mice , Mice, Nude , Microsomes, Liver/drug effects , Models, Molecular , Morpholines/chemistry , Neoplasms/physiopathology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats
7.
Semin Cancer Biol ; 43: 119-133, 2017 04.
Article in English | MEDLINE | ID: mdl-28188829

ABSTRACT

Interstitial acidification is a hallmark of solid tumor tissues resulting from the combination of different factors, including cellular buffering systems, defective tissue perfusion and high rates of cellular metabolism. Besides contributing to tumor pathogenesis and promoting tumor progression, tumor acidosis constitutes an important intrinsic and extrinsic mechanism modulating therapy sensitivity and drug resistance. In fact, pharmacological properties of anticancer drugs can be affected not only by tissue structure and organization but also by the distribution of the interstitial tumor pH. The acidic tumor environment is believed to create a chemical barrier that limits the effects and activity of many anticancer drugs. In this review article we will discuss the general protumorigenic effects of acidosis, the role of tumor acidosis in the modulation of therapeutic efficacy and potential strategies to overcome pH-dependent therapy-resistance.


Subject(s)
Acids/metabolism , Neoplasms/metabolism , Humans , Hydrogen-Ion Concentration , Neoplasms/therapy
8.
Curr Med Chem ; 24(26): 2827-2845, 2017.
Article in English | MEDLINE | ID: mdl-28031009

ABSTRACT

Drug resistance and therapeutic failure are important causes of disease relapse and progression and may be considered as major obstacles preventing cure of cancer patients. Tumors use a large number of molecular, biochemical and cellular mechanisms to evade chemotherapy and targeted therapy. Important determinants of drug efficacy are the intrinsic pharmacological characteristics of drugs which may be largely affected by the tumor physiology. One feature of solid tumors is the acidic extracellular pH, resulting from metabolic shift and increased metabolic rates combined with low tissue perfusion due to defective vasculature. Besides its role in tumor pathobiology promoting tumor growth and metastasis, the acidic tumor environment creates a chemical barrier for many anticancer drugs, thus limiting their activity. The content of this review will be focused on the pathobiology of tumor acidosis and on its role in therapeutic resistance.


Subject(s)
Acidosis/drug therapy , Acidosis/pathology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Humans
9.
ACS Med Chem Lett ; 5(4): 440-5, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24900855

ABSTRACT

In order to find optimal core structures as starting points for lead optimization, a multiparameter lead generation workflow was designed with the goal of finding BACE-1 inhibitors as a treatment for Alzheimer's disease. De novo design of core fragments was connected with three predictive in silico models addressing target affinity, permeability, and hERG activity, in order to guide synthesis. Taking advantage of an additive SAR, the prioritized cores were decorated with a few, well-characterized substituents from known BACE-1 inhibitors in order to allow for core-to-core comparisons. Prediction methods and analyses of how physicochemical properties of the core structures correlate to in vitro data are described. The syntheses and in vitro data of the test compounds are reported in a separate paper by Ginman et al. [J. Med. Chem. 2013, 56, 4181-4205]. The affinity predictions are described in detail by Roos et al. [J. Chem. Inf. 2014, DOI: 10.1021/ci400374z].

10.
J Chem Inf Model ; 54(3): 818-25, 2014 Mar 24.
Article in English | MEDLINE | ID: mdl-24456077

ABSTRACT

Scoring potency is a main challenge for structure based drug design. Inductive effects of subtle variations in the ligand are not possible to accurately predict by classical computational chemistry methods. In this study, the problem of predicting potency of ligands with electronic variations participating in key interactions with the protein was addressed. The potency was predicted for a large set of cyclic amidine and guanidine cores extracted from ß-secretase (BACE-1) inhibitors. All cores were of similar size and had equal interaction motifs but were diverse with respect to electronic substitutions. A density functional theory approach, in combination with a representation of the active site of a protein using only key residues, was shown to be predictive. This computational approach was used to guide and support drug design, within the time frame of a normal drug discovery design cycle.


Subject(s)
Amidines/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemistry , Guanidine/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Amidines/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Computational Biology , Enzyme Inhibitors/pharmacology , Guanidine/pharmacology , Humans , Models, Biological , Models, Molecular
11.
J Med Chem ; 56(11): 4181-205, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23126626

ABSTRACT

By use of iterative design aided by predictive models for target affinity, brain permeability, and hERG activity, novel and diverse compounds based on cyclic amidine and guanidine cores were synthesized with the goal of finding BACE-1 inhibitors as a treatment for Alzheimer's disease. Since synthesis feasibility had low priority in the design of the cores, an extensive synthesis effort was needed to make the relevant compounds. Syntheses of these compounds are reported, together with physicochemical properties and structure-activity relationships based on in vitro data. Four crystal structures of diverse amidines binding in the active site are deposited and discussed. Inhibitors of BACE-1 with 3 µM to 32 nM potencies in cells are shown, together with data on in vivo brain exposure levels for four compounds. The results presented show the importance of the core structure for the profile of the final compounds.


Subject(s)
Amidines/chemical synthesis , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Guanidines/chemical synthesis , Amidines/chemistry , Amidines/pharmacology , Amyloid Precursor Protein Secretases/chemistry , Animals , Aspartic Acid Endopeptidases/chemistry , Brain/metabolism , CHO Cells , Cell Line, Tumor , Cell Membrane Permeability , Computer Simulation , Cricetinae , Crystallography, X-Ray , Dogs , Drug Stability , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/metabolism , Female , Guanidines/chemistry , Guanidines/pharmacology , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred C57BL , Protein Conformation , Quantitative Structure-Activity Relationship , Stereoisomerism
12.
J Med Chem ; 55(21): 9297-311, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-23017051

ABSTRACT

Amino-2H-imidazoles are described as a new class of BACE-1 inhibitors for the treatment of Alzheimer's disease. Synthetic methods, crystal structures, and structure-activity relationships for target activity, permeability, and hERG activity are reported and discussed. Compound (S)-1m was one of the most promising compounds in this report, with high potency in the cellular assay and a good overall profile. When guinea pigs were treated with compound (S)-1m, a concentration and time dependent decrease in Aß40 and Aß42 levels in plasma, brain, and CSF was observed. The maximum reduction of brain Aß was 40-50%, 1.5 h after oral dosing (100 µmol/kg). The results presented highlight the potential of this new class of BACE-1 inhibitors with good target potency and with low effect on hERG, in combination with a fair CNS exposure in vivo.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain/drug effects , Imidazoles/chemical synthesis , Peptide Fragments/metabolism , Amyloid Precursor Protein Secretases/chemistry , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Animals , Aspartic Acid Endopeptidases/chemistry , Brain/metabolism , Cell Line , Crystallography, X-Ray , Dogs , Female , Guinea Pigs , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Peptide Fragments/blood , Peptide Fragments/cerebrospinal fluid , Permeability , Stereoisomerism , Structure-Activity Relationship , Tissue Distribution
14.
Bioorg Med Chem Lett ; 19(7): 2009-12, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19264481

ABSTRACT

The synthesis and SAR of a new series of LXR agonist is reported. The N-Aryl-3,3,3-trifluoro-2-hydroxy-2-methyl-propionamide hits were found in a limited screen of the AstraZeneca compound collection. The effort to optimize these hits into LXRbeta selectivity is described. Compound 20 displayed desirable pharmacokinetic profile and up regulation of ABCA1 and ABCG1 mRNA in the brain were achieved when evaluated in vivo in mice.


Subject(s)
Amides/pharmacology , DNA-Binding Proteins/agonists , Lactates/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Sulfonamides/pharmacology , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/metabolism , Amides/chemical synthesis , Amides/chemistry , Animals , Brain/metabolism , Cell Line , Computer Simulation , DNA-Binding Proteins/metabolism , Genes, Reporter , Humans , Lactates/chemical synthesis , Lactates/chemistry , Liver X Receptors , Mice , Orphan Nuclear Receptors , Receptors, Cytoplasmic and Nuclear/metabolism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Up-Regulation
15.
Bioorg Med Chem Lett ; 16(5): 1397-401, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16337120

ABSTRACT

The design and synthesis of a new series of c-Jun N-terminal kinase-3 (JNK3) inhibitors with selectivity against JNK1 are reported. The novel series of substituted 2'-anilino-4,4'-bipyridines were designed based on a combination of hits from high throughput screening and X-ray crystal structure information of compounds crystallized into the JNK3 ATP binding active site.


Subject(s)
Aniline Compounds/chemistry , Drug Design , Mitogen-Activated Protein Kinase 10/antagonists & inhibitors , Pyridines/chemical synthesis , Pyridines/pharmacology , Animals , Crystallography, X-Ray , Inhibitory Concentration 50 , Mitogen-Activated Protein Kinase 10/chemistry , Mitogen-Activated Protein Kinase 10/metabolism , Models, Molecular , Protein Structure, Tertiary , Pyridines/chemistry , Rats , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 15(22): 5095-9, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-16140012

ABSTRACT

The structure-based design and synthesis of a new series of c-Jun N-terminal kinase-3 inhibitors with selectivity against JNK1 and p38alpha is reported. The novel series of substituted 6-anilinoindazoles were designed based on a combination of hits from high throughput screening and X-ray crystal structure information of the compounds crystallized into the JNK3 ATP binding active site.


Subject(s)
Drug Design , Indazoles/chemistry , Indazoles/pharmacology , Mitogen-Activated Protein Kinase 10/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Binding Sites , Crystallography, X-Ray , Indazoles/chemical synthesis , Inhibitory Concentration 50 , Mitogen-Activated Protein Kinase 10/metabolism , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/metabolism , Mitogen-Activated Protein Kinase 8/antagonists & inhibitors , Mitogen-Activated Protein Kinase 8/metabolism , Protein Kinase Inhibitors/chemistry , Protein Structure, Tertiary , Sensitivity and Specificity , Structure-Activity Relationship , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL