Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 9(5): 2584-2595, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37014978

ABSTRACT

The renaissance gene therapy experiences these days requires specialist biomaterials and a systemic understanding of major factors influencing their ability to deliver genetic material. Peptide transfection systems represent a major class of such biomaterials. Several peptidic reagents have been commercialized to date. However, a comparative assessment of peptide sequences alone without auxiliary support or excipients against a common determinant for their ability to complex and deliver DNA has been lacking. This study cross-compares commercial and experimental transfection reagents from the same family of helical amphiphiles. Factors defining the efficacy of DNA delivery including cell uptake and gene expression are assessed along with cytotoxicity and DNA complexation. The results show that despite differences in sequence composition, length, and origin, peptide reagents of the same structural family exhibit similar characteristics and limitations with common variability trends. The cross-comparison revealed that functional DNA delivery is independent of the peptide sequence used but is mediated by the ability of the reagents to co-fold with DNA. Peptide folding proved to be the common determinant for DNA complexation and delivery by peptidic transfection reagents.


Subject(s)
DNA , Peptides , Humans , DNA/genetics , DNA/chemistry , DNA/metabolism , Peptides/chemistry , Transfection , Amino Acid Sequence , Genetic Therapy
2.
EMBO Mol Med ; 14(8): e15418, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35758207

ABSTRACT

Immunotherapy is a powerful tool for cancer treatment, but the pleiotropic nature of cytokines and immunological agents strongly limits clinical translation and safety. To address this unmet need, we designed and characterised a systemically targeted cytokine gene delivery system through transmorphic encapsidation of human recombinant adeno-associated virus DNA using coat proteins from a tumour-targeted bacteriophage (phage). We show that Transmorphic Phage/AAV (TPA) particles provide superior delivery of transgenes over current phage-derived vectors through greater diffusion across the extracellular space and improved intracellular trafficking. We used TPA to target the delivery of cytokine-encoding transgenes for interleukin-12 (IL12), and novel isoforms of IL15 and tumour necrosis factor alpha (TNF α ) for tumour immunotherapy. Our results demonstrate selective and efficient gene delivery and immunotherapy against solid tumours in vivo, without harming healthy organs. Our transmorphic particle system provides a promising modality for safe and effective gene delivery, and cancer immunotherapies through cross-species complementation of two commonly used viruses.


Subject(s)
Bacteriophages , Neoplasms , Bacteriophages/genetics , Cytokines/metabolism , Dependovirus/genetics , Gene Transfer Techniques , Genetic Vectors , Humans , Immunotherapy , Neoplasms/genetics , Neoplasms/therapy , Transgenes
3.
Methods Mol Biol ; 2208: 33-48, 2021.
Article in English | MEDLINE | ID: mdl-32856254

ABSTRACT

Efficient gene transfer is necessary for advanced biotechnologies ranging from gene therapy to synthetic biology. Peptide nanoparticles provide suitable packaging systems promoting targeted gene expression or silencing. Though these systems have yet to match the transfection efficacy of viruses, they are typically devoid of drawbacks characteristic of virus-based vectors, including insertional mutagenesis, low packaging capacities, and strong immune responses. Given the promise nanoparticle formulations hold for gene delivery, methods of their preparation and accurate analysis of their physicochemical and biological properties become indispensable for progress toward systems that seek to outperform viral vectors. Herein, we report a comprehensive protocol for the preparation and characterization of archetypal peptide nanoparticles resulting from nonspecific and noncovalent complexation with RNA and DNA.


Subject(s)
Genetic Therapy/methods , Nanoparticles/chemistry , Peptides/chemistry , Gene Transfer Techniques , Genetic Vectors/chemistry , Transfection/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...