Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Neuroinflammation ; 21(1): 92, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610019

ABSTRACT

Glial cells are key players in the initiation of innate immunity in neurodegeneration. Upon damage, they switch their basal activation state and acquire new functions in a context and time-dependent manner. Since modulation of neuroinflammation is becoming an interesting approach for the treatment of neurodegenerative diseases, it is crucial to understand the specific contribution of these cells to the inflammatory reaction and to select experimental models that recapitulate what occurs in the human disease. Previously, we have characterized a region-specific activation pattern of CD11b+ cells and astrocytes in the α-synuclein overexpression mouse model of Parkinson´s disease (PD). In this study we hypothesized that the time and the intensity of dopaminergic neuronal death would promote different glial activation states. Dopaminergic degeneration was induced with two administration regimens of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), subacute (sMPTP) and chronic (cMPTP). Our results show that in the sMPTP mouse model, the pro-inflammatory phenotype of striatal CD11b+ cells was counteracted by an anti-inflammatory astrocytic profile. In the midbrain the roles were inverted, CD11b+ cells exhibited an anti-inflammatory profile and astrocytes were pro-inflammatory. The overall response generated resulted in decreased CD4 T cell infiltration in both regions. Chronic MPTP exposure resulted in a mild and prolonged neuronal degeneration that generated a pro-inflammatory response and increased CD4 T cell infiltration in both regions. At the onset of the neurodegenerative process, microglia and astrocytes cooperated in the removal of dopaminergic terminals. With time, only microglia maintained the phagocytic activity. In the ventral midbrain, astrocytes were the main phagocytic mediators at early stages of degeneration while microglia were the major phagocytic cells in the chronic state. In this scenario, we questioned which activation pattern recapitulates better the features of glial activation in PD. Glial activation in the cMPTP mouse model reflects many pathways of their corresponding counterparts in the human brain with advanced PD. Altogether, our results point toward a context-dependent cooperativity of microglia/myeloid cells and astrocytes in response to neuronal damage and the relevance of selecting the right experimental models for the study of neuroinflammation.


Subject(s)
Neuroglia , Neuroinflammatory Diseases , Humans , Animals , Mice , Phagocytes , Astrocytes , Disease Models, Animal , Dopamine , Anti-Inflammatory Agents
2.
Front Cell Dev Biol ; 11: 1128534, 2023.
Article in English | MEDLINE | ID: mdl-37228645

ABSTRACT

Aged muscles accumulate satellite cells with a striking decline response to damage. Although intrinsic defects in satellite cells themselves are the major contributors to aging-associated stem cell dysfunction, increasing evidence suggests that changes in the muscle-stem cell local microenvironment also contribute to aging. Here, we demonstrate that loss of the matrix metalloproteinase-10 (MMP-10) in young mice alters the composition of the muscle extracellular matrix (ECM), and specifically disrupts the extracellular matrix of the satellite cell niche. This situation causes premature features of aging in the satellite cells, contributing to their functional decline and a predisposition to enter senescence under proliferative pressure. Similarly, reduction of MMP-10 levels in young satellite cells from wild type animals induces a senescence response, while addition of the protease delays this program. Significantly, the effect of MMP-10 on satellite cell aging can be extended to another context of muscle wasting, muscular dystrophy. Systemic treatment of mdx dystrophic mice with MMP-10 prevents the muscle deterioration phenotype and reduces cellular damage in the satellite cells, which are normally under replicative pressure. Most importantly, MMP-10 conserves its protective effect in the satellite cell-derived myoblasts isolated from a Duchenne muscular dystrophy patient by decreasing the accumulation of damaged DNA. Hence, MMP-10 provides a previously unrecognized therapeutic opportunity to delay satellite cell aging and overcome satellite cell dysfunction in dystrophic muscles.

3.
J Immunother Cancer ; 10(8)2022 08.
Article in English | MEDLINE | ID: mdl-35918123

ABSTRACT

BACKGROUND: One of the main difficulties of adoptive cell therapies with chimeric antigen receptor (CAR)-T cells in solid tumors is the identification of specific target antigens. The tumor microenvironment can present suitable antigens for CAR design, even though they are not expressed by the tumor cells. We have generated a CAR specific for the splice variant extra domain A (EDA) of fibronectin, which is highly expressed in the tumor stroma of many types of tumors but not in healthy tissues. METHODS: EDA expression was explored in RNA-seq data from different human tumor types and by immunohistochemistry in paraffin-embedded tumor biopsies. Murine and human anti-EDA CAR-T cells were prepared using recombinant retro/lentiviruses, respectively. The functionality of EDA CAR-T cells was measured in vitro in response to antigen stimulation. The antitumor activity of EDA CAR-T cells was measured in vivo in C57BL/6 mice challenged with PM299L-EDA hepatocarcinoma cell line, in 129Sv mice-bearing F9 teratocarcinoma and in NSG mice injected with the human hepatocarcinoma cell line PLC. RESULTS: EDA CAR-T cells recognized and killed EDA-expressing tumor cell lines in vitro and rejected EDA-expressing tumors in immunocompetent mice. Notably, EDA CAR-T cells showed an antitumor effect in mice injected with EDA-negative tumor cells lines when the tumor stroma or the basement membrane of tumor endothelial cells express EDA. Thus, EDA CAR-T administration delayed tumor growth in immunocompetent 129Sv mice challenged with teratocarcinoma cell line F9. EDA CAR-T treatment exerted an antiangiogenic effect and significantly reduced gene signatures associated with epithelial-mesenchymal transition, collagen synthesis, extracellular matrix organization as well as IL-6-STAT5 and KRAS pathways. Importantly, the human version of EDA CAR, that includes the human 41BB and CD3ζ endodomains, exerted strong antitumor activity in NSG mice challenged with the human hepatocarcinoma cell line PLC, which expresses EDA in the tumor stroma and the endothelial vasculature. EDA CAR-T cells exhibited a tropism for EDA-expressing tumor tissue and no toxicity was observed in tumor bearing or in healthy mice. CONCLUSIONS: These results suggest that targeting the tumor-specific fibronectin splice variant EDA with CAR-T cells is feasible and offers a therapeutic option that is applicable to different types of cancer.


Subject(s)
Receptors, Chimeric Antigen , Teratocarcinoma , Animals , Endothelial Cells , Fibronectins , Humans , Mice , Mice, Inbred C57BL , T-Lymphocytes , Teratocarcinoma/metabolism , Tumor Microenvironment , Xenograft Model Antitumor Assays
4.
iScience ; 25(5): 104225, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35494238

ABSTRACT

Understanding the regulation of normal and malignant human hematopoiesis requires comprehensive cell atlas of the hematopoietic stem cell (HSC) regulatory microenvironment. Here, we develop a tailored bioinformatic pipeline to integrate public and proprietary single-cell RNA sequencing (scRNA-seq) datasets. As a result, we robustly identify for the first time 14 intermediate cell states and 11 stages of differentiation in the endothelial and mesenchymal BM compartments, respectively. Our data provide the most comprehensive description to date of the murine HSC-regulatory microenvironment and suggest a higher level of specialization of the cellular circuits than previously anticipated. Furthermore, this deep characterization allows inferring conserved features in human, suggesting that the layers of microenvironmental regulation of hematopoiesis may also be shared between species. Our resource and methodology is a stepping-stone toward a comprehensive cell atlas of the BM microenvironment.

5.
Cancer Lett ; 528: 45-58, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34973390

ABSTRACT

Adoptive cell transfer therapy using CD8+ T lymphocytes showed promising results eradicating metastatic malignancies. However, several regulatory mechanisms limit its efficacy. We studied the role of the expression of the transcription factor FOXP3 on CD8+ T cell function and anti-tumor immunity. Here we show that suboptimal T cell receptor stimulation of CD8+ T cells upregulates FOXP3 in vitro. Similarly, CD8 T cells transferred into tumor-bearing mice upregulate FOXP3 in vivo. Cell-intrinsic loss of FOXP3 by CD8+ T cells resulted in improved functionality after TCR stimulation and better antitumor responses in vivo. Inhibition of the FOXP3/NFAT interaction likewise improved CD8+ T cell functionality. Transcriptomic analysis of cells after TCR stimulation revealed an enrichment of genes implicated in the response to IFN-γ, IFN-α, inflammatory response, IL-6/JAK/STAT, G2M checkpoint and IL-2/STAT signaling in FOXP3-deficient CD8+ T cells with respect to FOXP3-wt CD8+ T cells. Our results suggest that transient expression of FOXP3 by CD8+ T cells in the tumor microenvironment restrains their anti-tumor activity, with clear implications for improving T cell responses during immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Forkhead Transcription Factors/metabolism , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/immunology , Animals , Humans , Mice
7.
J Neuroinflammation ; 16(1): 233, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31757220

ABSTRACT

BACKGROUND: Inflammation is a critical process for the progression of neuronal death in neurodegenerative disorders. Microglia play a central role in neuroinflammation and may affect neuron vulnerability. Next generation sequencing has shown the molecular heterogeneity of microglial cells; however, the variability in their response to pathological inputs remains unknown. METHODS: To determine the effect of an inflammatory stimulus on microglial cells, lipopolysaccharide (LPS) was administered peripherally to mice and the inflammatory status of the cortex, hippocampus, midbrain, and striatum was assessed. Microglial activation and interaction with the immune system were analyzed in single cell suspensions obtained from the different brain regions by fluorescence-activated cell sorting, next generation RNA sequencing, real-time PCR, and immunohistochemical techniques. Antigen-presenting properties of microglia were evaluated by the ability of isolated cells to induce a clonal expansion of CD4+ T cells purified from OT-II transgenic mice. RESULTS: Under steady-state conditions, the midbrain presented a high immune-alert state characterized by the presence of two unique microglial subpopulations, one expressing the major histocompatibility complex class II (MHC-II) and acting as antigen-presenting cells and another expressing the toll-like receptor 4 (TLR4), and by the presence of a higher proportion of infiltrating CD4+ T cells. This state was not detected in the cortex, hippocampus, or striatum. Systemic LPS administration induced a general increase in classic pro-inflammatory cytokines, in co-inhibitory programmed death ligand 1 (PD-L1), and in cytotoxic T lymphocyte antigen 4 (CTLA-4) receptors, as well as a decrease in infiltrating effector T cells in all brain regions. Interestingly, a specific immune-suppressive response was observed in the midbrain which was characterized by the downregulation of MHC-II microglial expression, the upregulation of the anti-inflammatory cytokines IL10 and TGFß, and the increase in infiltrating regulatory T cells. CONCLUSIONS: These data show that the midbrain presents a high immune-alert state under steady-state conditions that elicits a specific immune-suppressive response when exposed to an inflammatory stimulus. This specific inflammatory tone and response may have an impact in neuronal viability.


Subject(s)
Inflammation/metabolism , Lipopolysaccharides/pharmacology , Mesencephalon/drug effects , Microglia/drug effects , Animals , Antigens, CD/metabolism , Flow Cytometry , Immunity, Innate , Male , Mesencephalon/metabolism , Mice , Microglia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...