Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Nat Commun ; 15(1): 5570, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956053

ABSTRACT

Despite the development of novel therapies for acute myeloid leukemia, outcomes remain poor for most patients, and therapeutic improvements are an urgent unmet need. Although treatment regimens promoting differentiation have succeeded in the treatment of acute promyelocytic leukemia, their role in other acute myeloid leukemia subtypes needs to be explored. Here we identify and characterize two lysine deacetylase inhibitors, CM-444 and CM-1758, exhibiting the capacity to promote myeloid differentiation in all acute myeloid leukemia subtypes at low non-cytotoxic doses, unlike other commercial histone deacetylase inhibitors. Analyzing the acetylome after CM-444 and CM-1758 treatment reveals modulation of non-histone proteins involved in the enhancer-promoter chromatin regulatory complex, including bromodomain proteins. This acetylation is essential for enhancing the expression of key transcription factors directly involved in the differentiation therapy induced by CM-444/CM-1758 in acute myeloid leukemia. In summary, these compounds may represent effective differentiation-based therapeutic agents across acute myeloid leukemia subtypes with a potential mechanism for the treatment of acute myeloid leukemia.


Subject(s)
Cell Differentiation , Epigenesis, Genetic , Histone Deacetylase Inhibitors , Leukemia, Myeloid, Acute , Humans , Cell Differentiation/drug effects , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Cell Line, Tumor , Acetylation/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Leukemic/drug effects , Animals
2.
Blood Adv ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058976

ABSTRACT

Hematological toxicity is a common side effect of CAR-T therapies, particularly severe in relapsed/refractory multiple myeloma (MM) patients. In this study, we analyzed a cohort of 48 patients treated with BCMA CAR-T cells to characterize the kinetics of cytopenia, identify predictive factors and determine potential mechanism underlying these toxicities. The overall incidence of cytopenia was 95.7%, and grade>3 thrombocytopenia and neutropenia, one month after infusion, was observed in 57% and 53% of the patients, being still present after one year in 4 and 3 patients respectively. Presence of cytopenia at baseline and high peak inflammatory markers highly correlated with cytopenia persisting up to three months. To determine potential mechanisms underpinning cytopenias, we evaluated the paracrine effect of BCMA CAR-T cells on HSPCs differentiation using an ex-vivo myeloid differentiation model. Phenotypic analysis showed that supernatants from activated CAR-T cells (spCAR) halted HSPCs differentiation, promoting more immature phenotypes, with reduced expression of granulocytic, monocytic and erythroid markers, which could be prevented with a combination of IFNγ, TNFα/ß, TGFß, IL-6 and IL-17 inhibitors. Single-cell RNA-seq demonstrated upregulation of transcription factors associated with early stages of hematopoietic differentiation in the presence of spCAR (GATA2, RUNX1, CEBPA) and decreased activity of key regulons involved in neutrophil and monocytic maturation (ID2, MAFB). Our results suggest that CAR-T cell activation negatively influences hematopoietic differentiation through paracrine effects inducing HSPCs maturation arrest. Moreover, our study contributes to the understanding of severe cytopenia observed after CAR-T therapy in MM and provides potential treatments to prevent or decrease its severity.

4.
Nat Commun ; 15(1): 5272, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902243

ABSTRACT

While myelodysplastic syndromes with del(5q) (del(5q) MDS) comprises a well-defined hematological subgroup, the molecular basis underlying its origin remains unknown. Using single cell RNA-seq (scRNA-seq) on CD34+ progenitors from del(5q) MDS patients, we have identified cells harboring the deletion, characterizing the transcriptional impact of this genetic insult on disease pathogenesis and treatment response. Interestingly, both del(5q) and non-del(5q) cells present similar transcriptional lesions, indicating that all cells, and not only those harboring the deletion, may contribute to aberrant hematopoietic differentiation. However, gene regulatory network (GRN) analyses reveal a group of regulons showing aberrant activity that could trigger altered hematopoiesis exclusively in del(5q) cells, pointing to a more prominent role of these cells in disease phenotype. In del(5q) MDS patients achieving hematological response upon lenalidomide treatment, the drug reverts several transcriptional alterations in both del(5q) and non-del(5q) cells, but other lesions remain, which may be responsible for potential future relapses. Moreover, lack of hematological response is associated with the inability of lenalidomide to reverse transcriptional alterations. Collectively, this study reveals transcriptional alterations that could contribute to the pathogenesis and treatment response of del(5q) MDS.


Subject(s)
Antigens, CD34 , Chromosome Deletion , Chromosomes, Human, Pair 5 , Hematopoietic Stem Cells , Lenalidomide , Myelodysplastic Syndromes , Single-Cell Analysis , Humans , Lenalidomide/pharmacology , Lenalidomide/therapeutic use , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/metabolism , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Antigens, CD34/metabolism , Chromosomes, Human, Pair 5/genetics , Male , Female , Aged , Gene Regulatory Networks/drug effects , Middle Aged , Hematopoiesis/drug effects , Hematopoiesis/genetics , Transcriptome , Aged, 80 and over , RNA-Seq , Gene Expression Profiling
5.
Adv Mater ; 36(34): e2400306, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38762768

ABSTRACT

To date, strategies aiming to modulate cell to extracellular matrix (ECM) interactions during organoid derivation remain largely unexplored. Here renal decellularized ECM (dECM) hydrogels are fabricated from porcine and human renal cortex as biomaterials to enrich cell-to-ECM crosstalk during the onset of kidney organoid differentiation from human pluripotent stem cells (hPSCs). Renal dECM-derived hydrogels are used in combination with hPSC-derived renal progenitor cells to define new approaches for 2D and 3D kidney organoid differentiation, demonstrating that in the presence of these biomaterials the resulting kidney organoids exhibit renal differentiation features and the formation of an endogenous vascular component. Based on these observations, a new method to produce kidney organoids with vascular-like structures is achieved through the assembly of hPSC-derived endothelial-like organoids with kidney organoids in 3D. Major readouts of kidney differentiation and renal cell morphology are assessed exploiting these culture platforms as new models of nephrogenesis. Overall, this work shows that exploiting cell-to-ECM interactions during the onset of kidney differentiation from hPSCs facilitates and optimizes current approaches for kidney organoid derivation thereby increasing the utility of these unique cell culture platforms for personalized medicine.


Subject(s)
Cell Differentiation , Hydrogels , Kidney , Neovascularization, Physiologic , Organoids , Organoids/cytology , Hydrogels/chemistry , Humans , Animals , Swine , Kidney/cytology , Cell Differentiation/drug effects , Neovascularization, Physiologic/drug effects , Pluripotent Stem Cells/cytology , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Tissue Engineering/methods , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Angiogenesis
6.
Immunity ; 57(2): 379-399.e18, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38301653

ABSTRACT

Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.


Subject(s)
B-Lymphocytes , Palatine Tonsil , Humans , Adult , B-Lymphocytes/metabolism
7.
Haematologica ; 108(10): 2652-2663, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37021532

ABSTRACT

Clinical trials have shown that lentiviral-mediated gene therapy can ameliorate bone marrow failure (BMF) in nonconditioned Fanconi anemia (FA) patients resulting from the proliferative advantage of corrected FA hematopoietic stem and progenitor cells (HSPC). However, it is not yet known if gene therapy can revert affected molecular pathways in diseased HSPC. Single-cell RNA sequencing was performed in chimeric populations of corrected and uncorrected HSPC co-existing in the BM of gene therapy-treated FA patients. Our study demonstrates that gene therapy reverts the transcriptional signature of FA HSPC, which then resemble the transcriptional program of healthy donor HSPC. This includes a down-regulated expression of TGF-ß and p21, typically up-regulated in FA HSPC, and upregulation of DNA damage response and telomere maintenance pathways. Our results show for the first time the potential of gene therapy to rescue defects in the HSPC transcriptional program from patients with inherited diseases; in this case, in FA characterized by BMF and cancer predisposition.


Subject(s)
Fanconi Anemia , Pancytopenia , Humans , Fanconi Anemia/genetics , Fanconi Anemia/therapy , Fanconi Anemia/metabolism , Hematopoietic Stem Cells/metabolism , Genetic Therapy/methods , Transforming Growth Factor beta/metabolism , Up-Regulation , Pancytopenia/metabolism , Bone Marrow Failure Disorders/metabolism
8.
EMBO Rep ; 24(5): e55326, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36929576

ABSTRACT

The Sin3 transcriptional regulator homolog A (Sin3A) is the core member of a multiprotein chromatin-modifying complex. Its inactivation at the CD4/CD8 double-negative stage halts further thymocyte development. Among various functions, Sin3A regulates STAT3 transcriptional activity, central to the differentiation of Th17 cells active in inflammatory disorders and opportunistic infections. To further investigate the consequences of conditional Sin3A inactivation in more mature precursors and post-thymic T cell, we have generated CD4-Cre and CD4-CreERT2 Sin3AF/F mice. Sin3A inactivation in vivo hinders both thymocyte development and peripheral T-cell survival. In vitro, in Th17 skewing conditions, Sin3A-deficient cells proliferate and acquire memory markers and yet fail to properly upregulate Il17a, Il23r, and Il22. Instead, IL-2+ and FOXP3+ are mostly enriched for, and their inhibition partially rescues IL-17A+ T cells. Notably, Sin3A deletion also causes an enrichment of genes implicated in the mTORC1 signaling pathway, overt STAT3 activation, and aberrant cytoplasmic RORγt accumulation. Thus, together our data unveil a previously unappreciated role for Sin3A in shaping critical signaling events central to the acquisition of immunoregulatory T-cell phenotypes.


Subject(s)
CD4-Positive T-Lymphocytes , Interleukin-17 , Animals , Mice , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Th17 Cells
9.
Elife ; 122023 01 11.
Article in English | MEDLINE | ID: mdl-36629404

ABSTRACT

Early hematopoiesis is a continuous process in which hematopoietic stem and progenitor cells (HSPCs) gradually differentiate toward specific lineages. Aging and myeloid malignant transformation are characterized by changes in the composition and regulation of HSPCs. In this study, we used single-cell RNA sequencing (scRNA-seq) to characterize an enriched population of human HSPCs obtained from young and elderly healthy individuals.Based on their transcriptional profile, we identified changes in the proportions of progenitor compartments during aging, and differences in their functionality, as evidenced by gene set enrichment analysis. Trajectory inference revealed that altered gene expression dynamics accompanied cell differentiation, which could explain aging-associated changes in hematopoiesis. Next, we focused on key regulators of transcription by constructing gene regulatory networks (GRNs) and detected regulons that were specifically active in elderly individuals. Using previous findings in healthy cells as a reference, we analyzed scRNA-seq data obtained from patients with myelodysplastic syndrome (MDS) and detected specific alterations of the expression dynamics of genes involved in erythroid differentiation in all patients with MDS such as TRIB2. In addition, the comparison between transcriptional programs and GRNs regulating normal HSPCs and MDS HSPCs allowed identification of regulons that were specifically active in MDS cases such as SMAD1, HOXA6, POU2F2, and RUNX1 suggesting a role of these transcription factors (TFs) in the pathogenesis of the disease.In summary, we demonstrate that the combination of single-cell technologies with computational analysis tools enable the study of a variety of cellular mechanisms involved in complex biological systems such as early hematopoiesis and can be used to dissect perturbed differentiation trajectories associated with perturbations such as aging and malignant transformation. Furthermore, the identification of abnormal regulatory mechanisms associated with myeloid malignancies could be exploited for personalized therapeutic approaches in individual patients.


Our blood contains many different types of cells; red blood cells carry oxygen through the body, platelets help to stop bleeding and a variety of white blood cells fight infections. All of these critical components come from a pool of immature cells in bone marrow, which can develop and specialise into any of these. However, as we get older, these immature cells can accumulate damage, including mutations in specific genes. This increases the risk of diseases such as myelodysplastic syndromes (MDS), a type of cancer in which the cells cannot develop and the patient does not have enough healthy mature blood cells. The changes in gene activity in the immature cells have previously been studied using samples from young and elderly people, as well as individuals with MDS. These studies examined large numbers of cells together, revealing differences between young and elderly people, and individuals with MDS. However, this does not describe how the different types alter their behaviour. To address this, Ainciburu, Ezponda et al. used a technique called single-cell RNA sequencing to study the gene activity in individual immature blood cells. This revealed changes associated with maturation that may account for the different combinations of cell populations in younger and older people. The results confirmed findings from previous studies and suggested new genes involved in ageing or MDS. Ainciburu, Ezponda et al. used these results to create an analytical system that highlights gene activity differences in individual MDS patients that are independent of age-related changes. These results provide new insights that could help further research into the development of MDS and the ageing process. In addition, scientists could study other diseases using this approach of analysing individual patients' gene activity. In future, this could help to personalise clinical decisions on diagnosis and treatment.


Subject(s)
Healthy Aging , Myelodysplastic Syndromes , Neoplasms , Humans , Aged , Hematopoiesis , Cell Differentiation , Hematopoietic Stem Cells/metabolism , Myelodysplastic Syndromes/metabolism , Neoplasms/pathology , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Homeodomain Proteins/metabolism
10.
Stem Cell Reports ; 18(1): 64-80, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36563688

ABSTRACT

Naive human pluripotent stem cells (hPSCs) are defined as the in vitro counterpart of the human preimplantation embryo's epiblast and are used as a model system to study developmental processes. In this study, we report the discovery and characterization of distinct cell populations coexisting with epiblast-like cells in 5iLAF naive human induced PSC (hiPSC) cultures. It is noteworthy that these populations closely resemble different cell types of the human embryo at early developmental stages. While epiblast-like cells represent the main cell population, interestingly we detect a cell population with gene and transposable element expression profile closely resembling the totipotent eight-cell (8C)-stage human embryo, and three cell populations analogous to trophectoderm cells at different stages of their maturation process: transition, early, and mature stages. Moreover, we reveal the presence of cells resembling primitive endoderm. Thus, 5iLAF naive hiPSC cultures provide an excellent opportunity to model the earliest events of human embryogenesis, from the 8C stage to the peri-implantation period.


Subject(s)
Embryo, Mammalian , Pluripotent Stem Cells , Humans , Embryonic Development/genetics , Endoderm , Germ Layers , Cell Differentiation/genetics , Blastocyst
11.
Nat Commun ; 13(1): 7619, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494342

ABSTRACT

Myelodysplastic syndromes (MDS) are hematopoietic stem cell (HSC) malignancies characterized by ineffective hematopoiesis, with increased incidence in older individuals. Here we analyze the transcriptome of human HSCs purified from young and older healthy adults, as well as MDS patients, identifying transcriptional alterations following different patterns of expression. While aging-associated lesions seem to predispose HSCs to myeloid transformation, disease-specific alterations may trigger MDS development. Among MDS-specific lesions, we detect the upregulation of the transcription factor DNA Damage Inducible Transcript 3 (DDIT3). Overexpression of DDIT3 in human healthy HSCs induces an MDS-like transcriptional state, and dyserythropoiesis, an effect associated with a failure in the activation of transcriptional programs required for normal erythroid differentiation. Moreover, DDIT3 knockdown in CD34+ cells from MDS patients with anemia is able to restore erythropoiesis. These results identify DDIT3 as a driver of dyserythropoiesis, and a potential therapeutic target to restore the inefficient erythroid differentiation characterizing MDS patients.


Subject(s)
Myelodysplastic Syndromes , Transcription Factors , Adult , Humans , Aged , Transcription Factors/genetics , Transcription Factors/metabolism , Myelodysplastic Syndromes/pathology , Erythropoiesis/genetics , Hematopoietic Stem Cells/metabolism , Gene Expression Regulation , Transcription Factor CHOP/genetics
12.
Sci Adv ; 8(39): eabo0514, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36179026

ABSTRACT

Identification of new markers associated with long-term efficacy in patients treated with CAR T cells is a current medical need, particularly in diseases such as multiple myeloma. In this study, we address the impact of CAR density on the functionality of BCMA CAR T cells. Functional and transcriptional studies demonstrate that CAR T cells with high expression of the CAR construct show an increased tonic signaling with up-regulation of exhaustion markers and increased in vitro cytotoxicity but a decrease in in vivo BM infiltration. Characterization of gene regulatory networks using scRNA-seq identified regulons associated to activation and exhaustion up-regulated in CARHigh T cells, providing mechanistic insights behind differential functionality of these cells. Last, we demonstrate that patients treated with CAR T cell products enriched in CARHigh T cells show a significantly worse clinical response in several hematological malignancies. In summary, our work demonstrates that CAR density plays an important role in CAR T activity with notable impact on clinical response.

13.
Animals (Basel) ; 12(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35883376

ABSTRACT

Each year, tens of thousands of people worldwide die of end-stage organ failure due to the limited availability of organs for use in transplantation. To meet this clinical demand, one of the last frontiers of regenerative medicine is the generation of humanized organs in pigs from pluripotent stem cells (PSCs) via blastocyst complementation. For this, organ-disabled pig models are needed. As endothelial cells (ECs) play a critical role in xenotransplantation rejection in every organ, we aimed to produce hematoendothelial-disabled pig embryos targeting the master transcription factor ETV2 via CRISPR-Cas9-mediated genome modification. In this study, we designed five different guide RNAs (gRNAs) against the DNA-binding domain of the porcine ETV2 gene, which were tested on porcine fibroblasts in vitro. Four out of five guides showed cleavage capacity and, subsequently, these four guides were microinjected individually as ribonucleoprotein complexes (RNPs) into one-cell-stage porcine embryos. Next, we combined the two gRNAs that showed the highest targeting efficiency and microinjected them at higher concentrations. Under these conditions, we significantly improved the rate of biallelic mutation. Hence, here, we describe an efficient one-step method for the generation of hematoendothelial-disabled pig embryos via CRISPR-Cas9 microinjection in zygotes. This model could be used in experimentation related to the in vivo generation of humanized organs.

14.
Leukemia ; 36(8): 1969-1979, 2022 08.
Article in English | MEDLINE | ID: mdl-35618797

ABSTRACT

Eradicating leukemia requires a deep understanding of the interaction between leukemic cells and their protective microenvironment. The CXCL12/CXCR4 axis has been postulated as a critical pathway dictating leukemia stem cell (LSC) chemoresistance in AML due to its role in controlling cellular egress from the marrow. Nevertheless, the cellular source of CXCL12 in the acute myeloid leukemia (AML) microenvironment and the mechanism by which CXCL12 exerts its protective role in vivo remain unresolved. Here, we show that CXCL12 produced by Prx1+ mesenchymal cells but not by mature osteolineage cells provide the necessary cues for the maintenance of LSCs in the marrow of an MLL::AF9-induced AML model. Prx1+ cells promote survival of LSCs by modulating energy metabolism and the REDOX balance in LSCs. Deletion of Cxcl12 leads to the accumulation of reactive oxygen species and DNA damage in LSCs, impairing their ability to perpetuate leukemia in transplantation experiments, a defect that can be attenuated by antioxidant therapy. Importantly, our data suggest that this phenomenon appears to be conserved in human patients. Hence, we have identified Prx1+ mesenchymal cells as an integral part of the complex niche-AML metabolic intertwining, pointing towards CXCL12/CXCR4 as a target to eradicate parenchymal LSCs in AML.


Subject(s)
Bone Marrow , Leukemia, Myeloid, Acute , Bone Marrow/metabolism , Energy Metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Oxidation-Reduction , Tumor Microenvironment
15.
Cell Metab ; 34(6): 857-873.e9, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35561674

ABSTRACT

It is not well understood why diabetic individuals are more prone to develop severe COVID-19. To this, we here established a human kidney organoid model promoting early hallmarks of diabetic kidney disease development. Upon SARS-CoV-2 infection, diabetic-like kidney organoids exhibited higher viral loads compared with their control counterparts. Genetic deletion of the angiotensin-converting enzyme 2 (ACE2) in kidney organoids under control or diabetic-like conditions prevented viral detection. Moreover, cells isolated from kidney biopsies from diabetic patients exhibited altered mitochondrial respiration and enhanced glycolysis, resulting in higher SARS-CoV-2 infections compared with non-diabetic cells. Conversely, the exposure of patient cells to dichloroacetate (DCA), an inhibitor of aerobic glycolysis, resulted in reduced SARS-CoV-2 infections. Our results provide insights into the identification of diabetic-induced metabolic programming in the kidney as a critical event increasing SARS-CoV-2 infection susceptibility, opening the door to the identification of new interventions in COVID-19 pathogenesis targeting energy metabolism.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Diabetes Mellitus , Diabetic Nephropathies , Humans , Kidney/metabolism , Organoids , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2
16.
Mol Ther Methods Clin Dev ; 25: 137-146, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35402636

ABSTRACT

Genome-editing strategies, especially CRISPR-Cas9 systems, have substantially increased the efficiency of innovative therapeutic approaches for monogenic diseases such as primary hyperoxalurias (PHs). We have previously demonstrated that inhibition of glycolate oxidase using CRISPR-Cas9 systems represents a promising therapeutic option for PH type I (PH1). Here, we extended our work evaluating the efficacy of liver-specific inhibition of lactate dehydrogenase (LDH), a key enzyme responsible for converting glyoxylate to oxalate; this strategy would not be limited to PH1, being applicable to other PH subtypes. In this work, we demonstrate a liver-specific inhibition of LDH that resulted in a drastic reduction of LDH levels in the liver of PH1 and PH3 mice after a single-dose delivery of AAV8 vectors expressing the CRISPR-Cas9 system, resulting in reduced urine oxalate levels and kidney damage without signs of toxicity. Deep sequencing analysis revealed that this approach was safe and specific, with no off-targets detected in the liver of treated animals and no on-target/off-tissue events. Altogether, our data provide evidence that in vivo genome editing using CRISPR-Cas9 systems would represent a valuable tool for improved therapeutic approaches for PH.

17.
Sci Adv ; 8(3): eabl4644, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35044826

ABSTRACT

Normal cell counterparts of solid and myeloid tumors accumulate mutations years before disease onset; whether this occurs in B lymphocytes before lymphoma remains uncertain. We sequenced multiple stages of the B lineage in elderly individuals and patients with lymphoplasmacytic lymphoma, a singular disease for studying lymphomagenesis because of the high prevalence of mutated MYD88. We observed similar accumulation of random mutations in B lineages from both cohorts and unexpectedly found MYD88L265P in normal precursor and mature B lymphocytes from patients with lymphoma. We uncovered genetic and transcriptional pathways driving malignant transformation and leveraged these to model lymphoplasmacytic lymphoma in mice, based on mutated MYD88 in B cell precursors and BCL2 overexpression. Thus, MYD88L265P is a preneoplastic event, which challenges the current understanding of lymphomagenesis and may have implications for early detection of B cell lymphomas.


Subject(s)
Lymphoma, B-Cell , Lymphoma , Waldenstrom Macroglobulinemia , Aged , Animals , Humans , Lymphoma, B-Cell/metabolism , Mice , Mutation , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Waldenstrom Macroglobulinemia/diagnosis , Waldenstrom Macroglobulinemia/genetics , Waldenstrom Macroglobulinemia/pathology
18.
Blood ; 138(17): 1583-1589, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34133718

ABSTRACT

Although light-chain amyloidosis (AL) and multiple myeloma (MM) are characterized by tumor plasma cell (PC) expansion in bone marrow (BM), their clinical presentation differs. Previous attempts to identify unique pathogenic mechanisms behind such differences were unsuccessful, and no studies have investigated the differentiation stage of tumor PCs in patients with AL and MM. We sought to define a transcriptional atlas of normal PC development in secondary lymphoid organs (SLOs), peripheral blood (PB), and BM for comparison with the transcriptional programs (TPs) of tumor PCs in AL, MM, and monoclonal gammopathy of undetermined significance (MGUS). Based on bulk and single-cell RNA sequencing, we observed 13 TPs during transition of normal PCs throughout SLOs, PB, and BM. We further noted the following: CD39 outperforms CD19 to discriminate newborn from long-lived BM-PCs; tumor PCs expressed the most advantageous TPs of normal PC differentiation; AL shares greater similarity to SLO-PCs whereas MM is transcriptionally closer to PB-PCs and newborn BM-PCs; patients with AL and MM enriched in immature TPs had inferior survival; and protein N-linked glycosylation-related TPs are upregulated in AL. Collectively, we provide a novel resource to understand normal PC development and the transcriptional reorganization of AL and other monoclonal gammopathies.


Subject(s)
Immunoglobulin Light-chain Amyloidosis/pathology , Multiple Myeloma/pathology , Plasma Cells/pathology , Transcriptome , Adult , Humans , Immunoglobulin Light-chain Amyloidosis/genetics , Multiple Myeloma/genetics , Plasma Cells/metabolism , Tumor Cells, Cultured
19.
Front Immunol ; 12: 659018, 2021.
Article in English | MEDLINE | ID: mdl-34012444

ABSTRACT

Information on the immunopathobiology of coronavirus disease 2019 (COVID-19) is rapidly increasing; however, there remains a need to identify immune features predictive of fatal outcome. This large-scale study characterized immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection using multidimensional flow cytometry, with the aim of identifying high-risk immune biomarkers. Holistic and unbiased analyses of 17 immune cell-types were conducted on 1,075 peripheral blood samples obtained from 868 COVID-19 patients and on samples from 24 patients presenting with non-SARS-CoV-2 infections and 36 healthy donors. Immune profiles of COVID-19 patients were significantly different from those of age-matched healthy donors but generally similar to those of patients with non-SARS-CoV-2 infections. Unsupervised clustering analysis revealed three immunotypes during SARS-CoV-2 infection; immunotype 1 (14% of patients) was characterized by significantly lower percentages of all immune cell-types except neutrophils and circulating plasma cells, and was significantly associated with severe disease. Reduced B-cell percentage was most strongly associated with risk of death. On multivariate analysis incorporating age and comorbidities, B-cell and non-classical monocyte percentages were independent prognostic factors for survival in training (n=513) and validation (n=355) cohorts. Therefore, reduced percentages of B-cells and non-classical monocytes are high-risk immune biomarkers for risk-stratification of COVID-19 patients.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Adaptive Immunity , Adult , Aged , Aged, 80 and over , B-Lymphocytes/immunology , Biomarkers , COVID-19/pathology , Female , Humans , Immunity, Innate , Lymphopenia/immunology , Lymphopenia/mortality , Lymphopenia/pathology , Male , Middle Aged , Monocytes/immunology , Prognosis , SARS-CoV-2 , Survival Analysis , Young Adult
20.
J Med Chem ; 64(6): 3392-3426, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33661013

ABSTRACT

Concomitant inhibition of key epigenetic pathways involved in silencing tumor suppressor genes has been recognized as a promising strategy for cancer therapy. Herein, we report a first-in-class series of quinoline-based analogues that simultaneously inhibit histone deacetylases (from a low nanomolar range) and DNA methyltransferase-1 (from a mid-nanomolar range, IC50 < 200 nM). Additionally, lysine methyltransferase G9a inhibitory activity is achieved (from a low nanomolar range) by introduction of a key lysine mimic group at the 7-position of the quinoline ring. The corresponding epigenetic functional cellular responses are observed: histone-3 acetylation, DNA hypomethylation, and decreased histone-3 methylation at lysine-9. These chemical probes, multitarget epigenetic inhibitors, were validated against the multiple myeloma cell line MM1.S, demonstrating promising in vitro activity of 12a (CM-444) with GI50 of 32 nM, an adequate therapeutic window (>1 log unit), and a suitable pharmacokinetic profile. In vivo, 12a achieved significant antitumor efficacy in a xenograft mouse model of human multiple myeloma.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Histocompatibility Antigens/metabolism , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Humans , Mice, Inbred BALB C , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL