Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Antimicrob Agents Chemother ; 68(7): e0160123, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38829050

ABSTRACT

We examined the correlation between three different methods of Mycobacterium tuberculosis quantification: time to positivity (TTP), log10 CFU, and an assay to detect differentially detectable M. tuberculosis (DD Mtb) from three different prospective studies. Participants with DD Mtb have significantly more variation in the CFU/TTP correlation than participants with no DD Mtb (P < 0.001). This may impact the design of early bactericidal activity studies that use TTP as the primary outcome.


Subject(s)
Bacterial Load , Mycobacterium tuberculosis , Mycobacterium tuberculosis/drug effects , Humans , Bacterial Load/methods , Prospective Studies , Male , Adult , Female
2.
Nat Commun ; 15(1): 3927, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724531

ABSTRACT

Sputum culture reversion after conversion is an indicator of tuberculosis (TB) treatment failure. We analyze data from the endTB multi-country prospective observational cohort (NCT03259269) to estimate the frequency (primary endpoint) among individuals receiving a longer (18-to-20 month) regimen for multidrug- or rifampicin-resistant (MDR/RR) TB who experienced culture conversion. We also conduct Cox proportional hazard regression analyses to identify factors associated with reversion, including comorbidities, previous treatment, cavitary disease at conversion, low body mass index (BMI) at conversion, time to conversion, and number of likely-effective drugs. Of 1,286 patients, 54 (4.2%) experienced reversion, a median of 173 days (97-306) after conversion. Cavitary disease, BMI < 18.5, hepatitis C, prior treatment with second-line drugs, and longer time to initial culture conversion were positively associated with reversion. Reversion was uncommon. Those with cavitary disease, low BMI, hepatitis C, prior treatment with second-line drugs, and in whom culture conversion is delayed may benefit from close monitoring following conversion.


Subject(s)
Antitubercular Agents , Diarylquinolines , Nitroimidazoles , Oxazoles , Sputum , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Sputum/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Diarylquinolines/therapeutic use , Diarylquinolines/pharmacology , Male , Female , Oxazoles/therapeutic use , Adult , Nitroimidazoles/therapeutic use , Nitroimidazoles/pharmacology , Middle Aged , Prospective Studies , Mycobacterium tuberculosis/drug effects , Drug Repositioning
3.
Sci Transl Med ; 16(730): eadi9711, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38232140

ABSTRACT

Despite their therapeutic benefits, antibiotics exert collateral damage on the microbiome and promote antimicrobial resistance. However, the mechanisms governing microbiome recovery from antibiotics are poorly understood. Treatment of Mycobacterium tuberculosis, the world's most common infection, represents the longest antimicrobial exposure in humans. Here, we investigate gut microbiome dynamics over 20 months of multidrug-resistant tuberculosis (TB) and 6 months of drug-sensitive TB treatment in humans. We find that gut microbiome dynamics and TB clearance are shared predictive cofactors of the resolution of TB-driven inflammation. The initial severe taxonomic and functional microbiome disruption, pathobiont domination, and enhancement of antibiotic resistance that initially accompanied long-term antibiotics were countered by later recovery of commensals. This resilience was driven by the competing evolution of antimicrobial resistance mutations in pathobionts and commensals, with commensal strains with resistance mutations reestablishing dominance. Fecal-microbiota transplantation of the antibiotic-resistant commensal microbiome in mice recapitulated resistance to further antibiotic disruption. These findings demonstrate that antimicrobial resistance mutations in commensals can have paradoxically beneficial effects by promoting microbiome resilience to antimicrobials and identify microbiome dynamics as a predictor of disease resolution in antibiotic therapy of a chronic infection.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Resilience, Psychological , Humans , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL