Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Biomater Adv ; 158: 213774, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38237321

ABSTRACT

Ni-free Ti-based Shape Memory Alloys composed of non-toxic elements have been studied as promising candidates for biomedical applications. However, high tool wear makes them complex to manufacture with conventional techniques. In this way, Additive Manufacturing technologies allow to fabricate complex three-dimensional structures overcoming their poor workability. Control of composition, porosity, microstructure, texture and processing are the key challenges for developing Ni-free Ti-based Shape Memory Alloys. This article reviews various studies conducted on the Additive Manufacturing of Ni-free Ti-based shape memory alloys, including their processing, microstructures and properties.


Subject(s)
Nickel , Shape Memory Alloys , Titanium , Commerce , Porosity
3.
Biomater Sci ; 10(14): 3845-3855, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35678531

ABSTRACT

Hydrogels have been recently proposed as suitable materials to generate reactive oxygen and nitrogen species (RONS) upon gas-plasma treatment, and postulated as promising alternatives to conventional cancer therapies. Acting as delivery vehicles that allow a controlled release of RONS to the diseased site, plasma-treated hydrogels can overcome some of the limitations presented by plasma-treated liquids in in vivo therapies. In this work, we optimized the composition of a methylcellulose (MC) hydrogel to confer it with the ability to form a gel at physiological temperatures while remaining in the liquid phase at room temperature to allow gas-plasma treatment with suitable formation of plasma-generated RONS. MC hydrogels demonstrated the capacity for generation, prolonged storage and release of RONS. This release induced cytotoxic effects on the osteosarcoma cancer cell line MG-63, reducing its cell viability in a dose-response manner. These promising results postulate plasma-treated thermosensitive hydrogels as good candidates to provide local anticancer therapies.


Subject(s)
Methylcellulose , Plasma Gases , Case-Control Studies , Hydrogels/pharmacology , Reactive Oxygen Species/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...