Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 10(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39057487

ABSTRACT

Measuring the viscosity of pharmaceutical dosage forms is a crucial process. Viscosity provides information about the stability of the composition, the release rate of the drug, bioavailability, and, in the case of injectable drug formulations, even the force required for injection. However, measuring viscosity is a complex task with numerous challenges, especially for non-Newtonian materials, which include most pharmaceutical formulations, such as gels. Selecting the appropriate shear rate is critical. Since viscosity in many systems is highly temperature-dependent, stable temperature control is necessary during the measurement. Using microfluidics technology, it is now possible to perform rheological characterization and conduct fast and accurate measurements. Small sample volumes (even below 500 µL) are required, and viscosity determination can be carried out over a wide range of shear rates. Nevertheless, the pharmaceutical application of viscometers operating on the principle of microfluidics is not yet widespread. In our work, we compare the results of measurements taken with a microfluidic chip-based viscometer on different pharmaceutical forms (gels, solution) with those obtained using a traditional rotational viscometer, evaluating the relative advantages and disadvantages of the different methods. The microfluidics-based method enables time- and sample-efficient viscosity analysis of the examined pharmaceutical forms.

2.
Gels ; 9(6)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37367140

ABSTRACT

Controlling rheological properties offers the opportunity to gain insight into the physical characteristics, structure, stability and drug release rate of formulations. To better understand the physical properties of hydrogels, not only rotational but also oscillatory experiments should be performed. Viscoelastic properties, including elastic and viscous properties, are measured using oscillatory rheology. The gel strength and elasticity of hydrogels are of great importance for pharmaceutical development as the application of viscoelastic preparations has considerably expanded in recent decades. Viscosupplementation, ophthalmic surgery and tissue engineering are just a few examples from the wide range of possible applications of viscoelastic hydrogels. Hyaluronic acid, alginate, gellan gum, pectin and chitosan are remarkable representatives of gelling agents that attract great attention applied in biomedical fields. This review provides a brief summary of rheological properties, highlighting the viscoelasticity of hydrogels with great potential in biomedicine.

SELECTION OF CITATIONS
SEARCH DETAIL