Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(2): e24557, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298676

ABSTRACT

Aim of this paper is to evaluate short and long-term changes in T2 relaxation times after radiotherapy in patients with low and intermediate risk localized prostate cancer. A total of 24 patients were selected for this retrospective study. Each participant underwent 1.5T magnetic resonance imaging on seven separate occasions: initially after the implantation of gold fiducials, the required step for Cyberknife therapy guidance, followed by MRI scans two weeks post-therapy and monthly thereafter. As part of each MRI scan, the prostate region was manually delineated, and the T2 relaxation times were calculated for quantitative analysis. The T2 relaxation times between individual follow-ups were analyzed using Repeated Measures Analysis of Variance that revealed a significant difference across all measurements (F (6, 120) = 0.611, p << 0.001). A Bonferroni post hoc test revealed significant differences in median T2 values between the baseline and subsequent measurements, particularly between pre-therapy (M0) and two weeks post-therapy (M1), as well as during the monthly interval checks (M2 - M6). Some cases showed a delayed decrease in relaxation times, indicating the prolonged effects of therapy. The changes in T2 values during the course of radiotherapy can help in monitoring radiotherapy response in unconfirmed patients, quantifying the scarring process, and recognizing the therapy failure.

2.
PLoS One ; 18(6): e0286858, 2023.
Article in English | MEDLINE | ID: mdl-37279195

ABSTRACT

The independent component analysis (ICA) based methods are among the most prevalent techniques used for non-invasive fetal electrocardiogram (NI-fECG) processing. Often, these methods are combined with other methods, such adaptive algorithms. However, there are many variants of the ICA methods and it is not clear which one is the most suitable for this task. The goal of this study is to test and objectively evaluate 11 variants of ICA methods combined with an adaptive fast transversal filter (FTF) for the purpose of extracting the NI-fECG. The methods were tested on two datasets, Labour dataset and Pregnancy dataset, which contained real records obtained during clinical practice. The efficiency of the methods was evaluated from the perspective of determining the accuracy of detection of QRS complexes through the parameters of accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and harmonic mean between SE and PPV (F1). The best results were achieved with a combination of FastICA and FTF, which yielded mean values of ACC = 83.72%, SE = 92.13%, PPV = 90.16%, and F1 = 91.14%. Time of calculation was also taken into consideration in the methods. Although FastICA was ranked to be the sixth fastest with its mean computation time of 0.452 s, it had the best ratio of performance and speed. The combination of FastICA and adaptive FTF filter turned out to be very promising. In addition, such device would require signals acquired from the abdominal area only; no need to acquire reference signal from the mother's chest.


Subject(s)
Fetal Monitoring , Signal Processing, Computer-Assisted , Pregnancy , Female , Humans , Fetal Monitoring/methods , Algorithms , Fetus , Electrocardiography/methods
3.
Sci Rep ; 13(1): 10440, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369726

ABSTRACT

In recent times, widely understood spine diseases have advanced to one of the most urgetn problems where quick diagnosis and treatment are needed. To diagnose its specifics (e.g. to decide whether this is a scoliosis or sagittal imbalance) and assess its extend, various kind of imaging diagnostic methods (such as X-Ray, CT, MRI scan or ST) are used. However, despite their common use, some may be regarded as (to a level) invasive methods and there are cases where there are contraindications to using them. Besides, which is even more of a problem, these are very expensive methods and whilst their use for pure diagnostic purposes is absolutely valid, then due to their cost, they cannot rather be considered as tools which would be equally valid for bad posture screening programs purposes. This paper provides an initial evaluation of the alternative approach to the spine diseases diagnostic/screening using inertial measurement unit and we propose policy-based computing as the core for the inference systems. Although the methodology presented herein is potentially applicable to a variety of spine diseases, in the nearest future we will focus specifically on sagittal imbalance detection.


Subject(s)
Expert Systems , Scoliosis , Humans , Scoliosis/diagnostic imaging , Radiography , Magnetic Resonance Imaging , X-Rays , Spine/diagnostic imaging
4.
Sleep Disord ; 2023: 8787132, 2023.
Article in English | MEDLINE | ID: mdl-37360853

ABSTRACT

Obstructive sleep apnea (OSA) pathologically stresses the cardiovascular system. Apneic events cause significant oscillatory surges in nocturnal blood pressure (BP). Trajectories of these surges vary widely. This variability challenges the quantification, characterization, and mathematical modeling of BP surge dynamics. We present a method of aggregating trajectories of apnea-induced BP surges using a sample-by-sample averaging of continuously recorded BP. We applied the method to recordings of overnight BP (average total sleep time: 4.77 ± 1.64 h) for 10 OSA patients (mean AHI: 63.5 events/h; range: 18.3-105.4). We studied surges in blood pressure due to obstructive respiratory events separated from other such events by at least 30 s (274 total events). These events increased systolic (SBP) and diastolic (DBP) BP by 19 ± 7.1 mmHg (14.8%) and 11 ± 5.6 mmHg (15.5%), respectively, relative to mean values during wakefulness. Further, aggregated SBP and DBP peaks occurred on average 9 s and 9.5 s after apnea events, respectively. Interestingly, the amplitude of the SBP and DBP peaks varied across sleep stages, with mean peak ranging from 128.8 ± 12.4 to 166.1 ± 15.5 mmHg for SBP and from 63.1 ± 8.2 to 84.2 ± 9.4 mmHg for DBP. The aggregation method provides a high level of granularity in quantifying BP oscillations from OSA events and may be useful in modeling autonomic nervous system responses to OSA-induced stresses.

SELECTION OF CITATIONS
SEARCH DETAIL
...