Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Org Chem Front ; 11(7): 2008-2014, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-39007032

ABSTRACT

Cyclopropanes are recurrent structural motifs in natural products and bioactive molecules. Recently, biocatalytic cyclopropanations have emerged as a powerful approach to access enantioenriched cyclopropanes, complementing chemocatalytic approaches developed over the last several decades. Here, we report the development of a first biocatalytic strategy for cyclopropanation using ethyl α-diazopyruvate as a novel enzyme-compatible carbene precursor. Using myoglobin variant Mb(H64V,V68G) as the biocatalyst, this method afforded the efficient synthesis of α-cyclopropylpyruvates in high diastereomeric ratios and enantiomeric excess (up to 99% ee). The ketoester moiety in the cyclopropane products can be used to synthesize diverse optically pure cyclopropane derivatives. Furthermore, the enzymatically obtained α-cyclopropylpyruvate products could be converted into enantiopure cyclobutenoates via a metal-free photochemical ring expansion without loss of optical activity.

2.
Angew Chem Int Ed Engl ; : e202406779, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752612

ABSTRACT

Fluorinated cyclopropanes are highly desired pharmacophores in drug discovery owing to the rigid nature of the cyclopropane ring and the beneficial effects of C-F bonds on the pharmacokinetic properties, cell permeability, and metabolic stability of drug molecules. Herein a biocatalytic strategy for the stereoselective synthesis of mono-fluorinated and gem-difluoro cyclopropanes is reported though the use of engineered myoglobin-based catalysts. In particular, this system allows for a broad range of gem-difluoro alkenes to be cyclopropanated in the presence of diazoacetonitrile with excellent diastereo and enantiocontrol (up to 99 : 1 d.r. and 99 % e.e.), thereby enabling a transformation not currently accessible with chemocatalytic methods. The synthetic utility of the present approach is further exemplified through the gram-scale synthesis of a key gem-difluorinated cyclopropane intermediate useful for the preparation of fluorinated bioactive molecules.

3.
Nat Commun ; 14(1): 7985, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042860

ABSTRACT

Hemoproteins have recently emerged as promising biocatalysts for new-to-nature carbene transfer reactions. However, mechanistic understanding of the interplay between productive and unproductive pathways in these processes is limited. Using spectroscopic, structural, and computational methods, we investigate the mechanism of a myoglobin-catalyzed cyclopropanation reaction with diazoketones. These studies shed light on the nature and kinetics of key catalytic steps in this reaction, including the formation of an early heme-bound diazo complex intermediate, the rate-determining nature of carbene formation, and the cyclopropanation mechanism. Our analyses further reveal the existence of a complex mechanistic manifold for this reaction that includes a competing pathway resulting in the formation of an N-bound carbene adduct of the heme cofactor, which was isolated and characterized by X-ray crystallography, UV-Vis, and Mössbauer spectroscopy. This species can regenerate the active biocatalyst, constituting a non-productive, yet non-destructive detour from the main catalytic cycle. These findings offer a valuable framework for both mechanistic analysis and design of hemoprotein-catalyzed carbene transfer reactions.


Subject(s)
Methane , Myoglobin , Myoglobin/chemistry , Catalysis , Methane/chemistry , Heme
4.
Mater Sci Eng C Mater Biol Appl ; 72: 405-414, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28024603

ABSTRACT

Biocompatible polymeric materials with the potential to form functional structures, in association with different therapeutic molecules, in physiological media, represent a great potential for biological and pharmaceutical applications. Therefore, here the formation of a nano-complex between a synthetic cationic polymer and model drug (ampicillin trihydrate) was studied. The formed complex was characterized by size and zeta potential measurements, using dynamic light scattering and capillary electrophoresis. Moreover, the chemical and thermodynamically stability of these complexes were studied. The ionomeric material, here referred as EuCl, was obtained by equimolar reaction between Eudragit E and HCl. The structural characterization was carried out by potentiometric titration, FTIR spectroscopy, and DSC. The effect of pH, time, polymer concentration and ampicillin/polymer molar ratio over the hydrodynamic diameter and zeta potential were established. The results show that EuCl ionomer in aqueous media presents two different populations of nanoparticles; one of this tends to form flocculated aggregates in high pH and concentrations, by acquiring different conformations in solution by changing from a compact to an extended conformation. Moreover, the formation of an in situ interfacial polymer-drug complex was demonstrated, this could slightly reduce the hydrolytic degradation of the drug while affecting its solubility, mainly under acidic conditions.


Subject(s)
Ampicillin/chemistry , Nanocomposites/chemistry , Polymers/chemistry , Water/chemistry , Ampicillin/metabolism , Calorimetry, Differential Scanning , Electrochemical Techniques , Hydrogen-Ion Concentration , Kinetics , Methylmethacrylates/chemistry , Particle Size , Solubility , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...