Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(23): 15629-15647, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37967851

ABSTRACT

Transcriptional deregulation is a hallmark of many cancers and is exemplified by genomic amplifications of the MYC family of oncogenes, which occur in at least 20% of all solid tumors in adults. Targeting of transcriptional cofactors and the transcriptional cyclin-dependent kinase (CDK9) has emerged as a therapeutic strategy to interdict deregulated transcriptional activity including oncogenic MYC. Here, we report the structural optimization of a small molecule microarray hit, prioritizing maintenance of CDK9 selectivity while improving on-target potency and overall physicochemical and pharmacokinetic (PK) properties. This led to the discovery of the potent, selective, orally bioavailable CDK9 inhibitor 28 (KB-0742). Compound 28 exhibits in vivo antitumor activity in mouse xenograft models and a projected human PK profile anticipated to enable efficacious oral dosing. Notably, 28 is currently being investigated in a phase 1/2 dose escalation and expansion clinical trial in patients with relapsed or refractory solid tumors.


Subject(s)
Antineoplastic Agents , Neoplasms , Adult , Humans , Animals , Mice , Cyclin-Dependent Kinases , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Apoptosis , Cell Cycle Checkpoints , Disease Models, Animal , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Cyclin-Dependent Kinase 9 , Neoplasms/drug therapy
2.
Nucl Recept Signal ; 12: e003, 2014.
Article in English | MEDLINE | ID: mdl-25422593

ABSTRACT

The establishment of effective high throughput screening cascades to identify nuclear receptor (NR) ligands that will trigger defined, therapeutically useful sets of NR activities is of considerable importance. Repositioning of existing approved drugs with known side effect profiles can provide advantages because de novo drug design suffers from high developmental failure rates and undesirable side effects which have dramatically increased costs. Ligands that target estrogen receptor ß (ERß) could be useful in a variety of diseases ranging from cancer to neurological to cardiovascular disorders. In this context, it is important to minimize cross-reactivity with ERα, which has been shown to trigger increased rates of several types of cancer. Because of high sequence similarities between the ligand binding domains of ERα and ERß, preferentially targeting one subtype can prove challenging. Here, we describe a sequential ligand screening approach comprised of complementary in-house assays to identify small molecules that are selective for ERß. Methods include differential scanning fluorimetry, fluorescence polarization and a GAL4 transactivation assay. We used this strategy to screen several commercially-available chemical libraries, identifying thirty ERß binders that were examined for their selectivity for ERß versus ERα, and tested the effects of selected ligands in a prostate cancer cell proliferation assay. We suggest that this approach could be used to rapidly identify candidates for drug repurposing.


Subject(s)
Drug Evaluation, Preclinical/methods , Estrogen Receptor beta/metabolism , Cell Line, Tumor , Estrogen Receptor beta/genetics , Humans , Ligands , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Binding , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Substrate Specificity , Transcriptional Activation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL