Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 15(4)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38667349

ABSTRACT

The most prevalent viral pathogen of honeybees is Deformed Wing Virus (DWV) and its two most widely studied and common master-variants are DWV-A and DWV-B. The prevalence of DWV variants in the UK and in the US is changing, with the prevalence of the DWV-A strain declining and DWV-B increasing over time. In 2012, only DWV-A was detected on the Hawaiian Islands of Oahu. In this study we focused on a colony-level survey of DWV strains in a single apiary and examined the prevalence of DWV variants over the course of two years. In 2018 and 2019, a total of 16 colonies underwent viral testing in January, May, and September. Of those 16 colonies, four were monitored in both 2018 and 2019. Individual colonies showed variability of DWV master variants throughout the sampling period. DWV-A was consistently detected; however, the detection of DWV-B was variable across time in individual colonies. Ultimately, this study demonstrated a seasonal variation in both viral prevalence and load for DWV-B, providing a perspective on the dynamic nature of DWV master variants emerging in Hawaii.

2.
Viruses ; 13(6)2021 05 24.
Article in English | MEDLINE | ID: mdl-34073733

ABSTRACT

The combination of Deformed wing virus (DWV) and Varroa destructor is arguably one of the greatest threats currently facing western honey bees, Apis mellifera. Varroa's association with DWV has decreased viral diversity and increased loads of DWV within honey bee populations. Nowhere has this been better studied than in Hawaii, where the arrival of Varroa progressively led to the dominance of the single master variant (DWV-A) on both mite-infested Hawaiian Islands of Oahu and Big Island. Now, exactly 10 years following the original study, we find that the DWV population has changed once again, with variants containing the RdRp coding sequence pertaining to the master variant B beginning to co-dominate alongside variants with the DWV-A RdRp sequence on the mite-infested islands of Oahu and Big Island. In speculation, based on other studies, it appears this could represent a stage in the journey towards the complete dominance of DWV-B, a variant that appears better adapted to be transmitted within honey bee colonies.


Subject(s)
Animal Diseases/epidemiology , Animal Diseases/virology , Bees/virology , Genetic Variation , Open Reading Frames , RNA Virus Infections/veterinary , RNA Viruses/genetics , Animals , Genome, Viral , Prevalence , RNA Viruses/classification , Viral Load
3.
J Invertebr Pathol ; 151: 126-130, 2018 01.
Article in English | MEDLINE | ID: mdl-29175033

ABSTRACT

Varroa destructor, a parasitic mite of honey bees, is also a vector for viral diseases. The mite displays high host specificity and requires access to colonies of Apis spp. to complete its lifecycle. In contrast, the Deformed Wing Virus (DWV), one of the many viruses transmitted by V. destructor, appears to have a much broader host range. Previous studies have detected DWV in a variety of insect groups that are not directly parasitized by the mite. In this study, we take advantage of the discrete distribution of the Varroa mite in the Hawaiian archipelago to compare DWV prevalence on non-Apis flower visitors, and test whether Varroa presence is linked to a "viral spillover". We selected two islands with different viral landscapes: Oahu, where V. destructor has been present since 2007, and Maui, where the mite is absent. We sampled individuals of Apis mellifera, Ceratina smaragdula, Polistes aurifer, and Polistes exclamens, to assess and compare the DWV prevalence in the Hymenoptera community of the two islands. The results indicated that, as expected, honey bee colonies on Oahu have much higher incidence of DWV compared to Maui. Correspondingly, DWV was detected on the Non-Apis Hymenoptera collected from Oahu, but was absent in the species examined on Maui. The study sites selected shared a similar geography, climate, and insect fauna, but differed in the presence of the Varroa mite, suggesting an indirect, but significant, increase on DWV prevalence in the Hymenoptera community on mite-infected islands.


Subject(s)
Hymenoptera/virology , RNA Viruses/physiology , Animals , Bees/virology , Hawaii/epidemiology , Prevalence , Varroidae/virology
4.
Sci Rep ; 6: 34983, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27713534

ABSTRACT

There is an increasing global trend of emerging infectious diseases (EIDs) affecting a wide range of species, including honey bees. The global epidemic of the single stranded RNA Deformed wing virus (DWV), driven by the spread of Varroa destructor has been well documented. However, DWV is just one of many insect RNA viruses which infect a wide range of hosts. Here we report the full genome sequence of a novel Iflavirus named Moku virus (MV), discovered in the social wasp Vespula pensylvanica collected in Hawaii. The novel genome is 10,056 nucleotides long and encodes a polyprotein of 3050 amino acids. Phylogenetic analysis showed that MV is most closely related to Slow bee paralysis virus (SBPV), which is highly virulent in honey bees but rarely detected. Worryingly, MV sequences were also detected in honey bees and Varroa from the same location, suggesting that MV can also infect other hymenopteran and Acari hosts.


Subject(s)
Bees/virology , Insect Viruses/genetics , RNA Viruses/genetics , Varroidae/virology , Wasps/virology , Animals , Genome, Viral , Hawaii , Host Specificity , Insect Viruses/classification , Insect Viruses/isolation & purification , Phylogeny , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA, Viral/genetics , Viral Proteins/genetics
6.
Science ; 336(6086): 1304-6, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22679096

ABSTRACT

Emerging diseases are among the greatest threats to honey bees. Unfortunately, where and when an emerging disease will appear are almost impossible to predict. The arrival of the parasitic Varroa mite into the Hawaiian honey bee population allowed us to investigate changes in the prevalence, load, and strain diversity of honey bee viruses. The mite increased the prevalence of a single viral species, deformed wing virus (DWV), from ~10 to 100% within honey bee populations, which was accompanied by a millionfold increase in viral titer and a massive reduction in DWV diversity, leading to the predominance of a single DWV strain. Therefore, the global spread of Varroa has selected DWV variants that have emerged to allow it to become one of the most widely distributed and contagious insect viruses on the planet.


Subject(s)
Bees/parasitology , Bees/virology , Insect Viruses/growth & development , RNA Viruses/growth & development , Varroidae/physiology , Animals , Colony Collapse , Genetic Variation , Hawaii , Host-Parasite Interactions , Host-Pathogen Interactions , Insect Viruses/genetics , Insect Viruses/pathogenicity , RNA Viruses/genetics , RNA Viruses/pathogenicity , Varroidae/pathogenicity , Varroidae/virology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...