Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 21399, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33293645

ABSTRACT

Genotype-phenotype correlations of humans and dogs with hereditary methemoglobinemia are not yet well characterized. We determined total hemoglobin and methemoglobin (MetHb) concentrations, cytochrome b5 reductase (CYB5R) enzyme activities, genotypes, and clinical signs in 30 dogs with persistent cyanosis without cardiopulmonary disease. Erythrocytic CYB5R enzyme activities were low in all dogs assayed. Owner-reported quality of life ranged from subclinical to occasional exertional syncope. Two previously reported and two novel CYB5R3 missense variants were identified among the methemoglobinemic cohort and were predicted to impair enzyme function. Two variants were recurrent: a homozygous Ile194Leu substitution was found in Pomeranians and other small dogs, and a homozygous Arg219Pro change occurred predominately in pit bull terriers. The other two variants were Thr202Ala and Gly76Ser substitutions in single dogs. Of the two common CYB5R3 genotypes, Arg219Pro was associated with a more severe metabolic phenotype. We conclude that CYB5R3 deficiency is the predominate cause of canine hereditary methemoglobinemia. Although this finding is unlikely to alter the clinical approach to hereditary methemoglobinemia in dogs, it demonstrates the possibility of how genotype-phenotype cohort analysis might facilitate precision medicine in the future in veterinary medicine.


Subject(s)
Cytochrome-B(5) Reductase/genetics , Methemoglobinemia/congenital , Mutation, Missense , Amino Acid Substitution , Animals , Cytochrome-B(5) Reductase/deficiency , Dogs , Female , Genetic Predisposition to Disease , Hemoglobins/metabolism , Male , Methemoglobin/metabolism , Methemoglobinemia/genetics , Methemoglobinemia/metabolism , Prospective Studies
2.
Anim Genet ; 50(5): 543-545, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31294848

ABSTRACT

An eight-week old Doberman Pinscher was diagnosed with Ehlers Danlos syndrome based on the dog's hyper-mobile carpal, tarsal and stifle joints and abnormal skin. The skin was loose and hyper-elastic with several wounds and large atrophic scars. The dog was euthanized after a severe degloving injury from minimal trauma. A whole-genome sequence, generated with DNA from the dog's blood, contained a rare, homozygous C-to-T transition at position 2408978 on chromosome 11. This transition is predicted to alter the ADAMTS2 transcript (ADAMTS2:c.769C>T) and encode a nonsense mutation (p.Arg257Ter). Biallelic ADAMTS2 mutations have caused a type of Ehlers Danlos syndrome known as dermatosparaxis in other species.


Subject(s)
ADAMTS Proteins/genetics , Dog Diseases/genetics , Ehlers-Danlos Syndrome/veterinary , Skin Diseases/veterinary , Animals , Dogs , Ehlers-Danlos Syndrome/genetics , Skin Diseases/genetics
3.
J Vet Intern Med ; 31(6): 1860-1865, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28963729

ABSTRACT

A juvenile male mixed breed dog was presented for lethargy, exercise intolerance, and aggression when touched on the head. Cyanosis, tachycardia, and tachypnea were observed and persisted during oxygen supplementation. Arterial blood gas analysis by co-oximetry identified an increased methemoglobin concentration (27%; normal, <2%) with normal arterial oxygen tension. The methemoglobinemia and associated clinical signs resolved after administration of methylene blue (1 mg/kg) IV, and the dog was discharged. The affected dog's whole-genome sequence contained 2 potentially causal heterozygous CYB5R3 missense mutations suggesting that cytochrome b5 reductase deficiency was responsible for the methemoglobinemia. This hypothesis was confirmed by enzyme analysis that identified cytochrome b5 reductase activity in the affected dog's erythrocytes to only approximately 6% of that in a control sample. Clinical signs recurred 11 days after discharge but normalized and the methemoglobin concentration decreased with methylene blue administration PO (1.5 mg/kg, initially daily and then every other day).


Subject(s)
Cytochrome-B(5) Reductase/deficiency , Dog Diseases/genetics , Methemoglobinemia/veterinary , Methylene Blue/therapeutic use , Animals , Blood Gas Analysis/veterinary , Cytochrome-B(5) Reductase/genetics , Dog Diseases/drug therapy , Dogs , Erythrocytes/enzymology , Male , Methemoglobinemia/drug therapy , Methemoglobinemia/genetics , Methylene Blue/administration & dosage , Mutation, Missense , Whole Genome Sequencing/veterinary
4.
J Vet Intern Med ; 31(5): 1520-1526, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28833537

ABSTRACT

Consistent with a tentative diagnosis of neuronal ceroid lipofuscinosis (NCL), autofluorescent cytoplasmic storage bodies were found in neurons from the brains of 2 related Shiba Inu dogs with a young-adult onset, progressive neurodegenerative disease. Unexpectedly, no potentially causal NCL-related variants were identified in a whole-genome sequence generated with DNA from 1 of the affected dogs. Instead, the whole-genome sequence contained a homozygous 3 base pair (bp) deletion in a coding region of HEXB. The other affected dog also was homozygous for this 3-bp deletion. Mutations in the human HEXB ortholog cause Sandhoff disease, a type of GM2 gangliosidosis. Thin-layer chromatography confirmed that GM2 ganglioside had accumulated in an affected Shiba Inu brain. Enzymatic analysis confirmed that the GM2 gangliosidosis resulted from a deficiency in the HEXB encoded protein and not from a deficiency in products from HEXA or GM2A, which are known alternative causes of GM2 gangliosidosis. We conclude that the homozygous 3-bp deletion in HEXB is the likely cause of the Shiba Inu neurodegenerative disease and that whole-genome sequencing can lead to the early identification of potentially disease-causing DNA variants thereby refocusing subsequent diagnostic analyses toward confirming or refuting candidate variant causality.


Subject(s)
Dog Diseases/genetics , Gangliosidoses, GM2/veterinary , Gene Deletion , beta-Hexosaminidase beta Chain/genetics , Animals , Dog Diseases/pathology , Dogs , Female , Gangliosidoses, GM2/genetics , Gangliosidoses, GM2/pathology , Homozygote , Microscopy, Electron/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...