Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Arch Microbiol ; 203(7): 4593-4607, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34160629

ABSTRACT

Bark is a permanent surface for microbial colonization at the interface of trees and the surrounding air, but little is known about its microbial communities. We used shotgun metagenomic sequencing to analyze the bark microbiomes of avocado trees from two orchards, and compared one of them to rhizospheric soil. It was shown that the microbial communities of avocado bark have a well-defined taxonomic structure, with consistent patterns of abundance of bacteria, fungi, and archaea, even in trees from two different locations. Bark microbial communities were distinct from rhizospheric soil, although they showed overlap in some taxa. Thus, avocado bark is a well-defined environment, providing niches for specific taxonomic groups, many of which are also found in other aerial plant tissues. The present in-depth characterization of bark microbial communities can form a basis for their future manipulation for agronomical purposes.


Subject(s)
Biodiversity , Microbiota , Persea , Plant Bark , Archaea/genetics , Bacteria/genetics , Fungi/genetics , Fungi/physiology , Metagenomics , Microbiota/genetics , Microbiota/physiology , Persea/microbiology , Plant Bark/microbiology , Soil Microbiology
2.
Synapse ; 74(4): e22140, 2020 04.
Article in English | MEDLINE | ID: mdl-31610056

ABSTRACT

Experiences influence the development of the central nervous system. Cognitive training promotes changes in the structure of the brain, such as in its weight and number of cells, as well as ability to perform dendritic remodeling. The present study was designed to detect possible differences in the neuronal morphology of the dorsal hippocampus between female and male Long-Evans rats after cognitive training (CT). CT was promoted through three learning and memory tests: the Morris water maze, the Barnes circular maze, and Novel object recognition tests. Our data revealed no differences in learning or memory capacities between female and male rats; rats of the two sexes solved the behavioral test with equal efficiency. CT caused an increase in the basilar and apical dendritic arborization of CA1 neurons in male rats, whereas female rats that underwent CT presented only remodeling in the apical arbors of CA1 neurons. The basilar arbors of CA3 neurons of female rats showed an increase in arborization, but their apical arbors were not modified; the arbors of CA3 neurons of male rats submitted to CT were not modified. Total dendritic length was modified by CT in the apical arbors of CA1 neurons of female and male rats and in the basilar CA1 arbors of male rats. There was a significant increase in dendritic spine density in all arbors of CA1 and CA3 neurons of females and males subjected to CT. These results suggest that dendritic remodeling after CT is similar between female and male rats.


Subject(s)
CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/physiology , Cognition , Dendritic Spines/physiology , Learning , Animals , CA1 Region, Hippocampal/cytology , CA3 Region, Hippocampal/cytology , Female , Male , Rats , Rats, Long-Evans , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL