Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 4582, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35301355

ABSTRACT

Topological Dirac materials are attracting a lot of attention because they offer exotic physical phenomena. An exhaustive search coupled with first-principles calculations was implemented to investigate 10 Zintl compounds with a chemical formula of CaM2X2 (M = Zn or Cd, X = N, P, As, Sb, or Bi) under three crystal structures: CaAl2Si2-, ThCr2Si2-, and BaCu2S2-type crystal phases. All of the materials were found to energetically prefer the CaAl2Si2-type structure based on total ground state energy calculations. Symmetry-based indicators are used to evaluate their topological properties. Interestingly, we found that CaM2Bi2 (M = Zn or Cd) are topological crystalline insulators. Further calculations under the hybrid functional approach and analysis using k · p model reveal that they exhibit topological Dirac semimetal (TDSM) states, where the four-fold degenerate Dirac points are located along the high symmetry line in-between Г to A points. These findings are verified through Green's function surface state calculations under HSE06. Finally, phonon spectra calculations revealed that CaCd2Bi2 is thermodynamically stable. The Zintl phase of AM2X2 compounds have not been identified in any topological material databases, thus can be a new playground in the search for new topological materials.

2.
Nanoscale Adv ; 3(23): 6608-6616, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-36132660

ABSTRACT

Recent studies have demonstrated the feasibility of synthesizing two-dimensional (2D) Janus materials which possess intrinsic structural asymmetry. Hence, we performed a systematic first-principles study of 2D Janus transition metal dichalcogenide (TMD) monolayers based on PtXY (X,Y = S, Se, or Te). Our calculated formation energies show that these monolayer Janus structures retain the 1T phase. Furthermore, phonon spectral calculations confirm that these Janus TMD monolayers are thermodynamically stable. We found that PtSSe, PtSTe, and PtSeTe exhibit an insulating phase with indirect band gaps of 2.108, 1.335, and 1.221 eV, respectively, from hybrid functional calculations. Due to the breaking of centrosymmetry in the crystal structure, the spin-orbit coupling (SOC)-induced anisotropic Rashba splitting is observed around the M point. The calculated Rashba strengths from M to Γ (α M-Γ R) are 1.654, 1.103, and 0.435 eV Å-1, while the calculated values from M to K (α M-K R) are 1.333, 1.244, and 0.746 eV Å-1, respectively, for PtSSe, PtSTe, and PtSeTe. Interestingly, the spin textures reveal that the spin-splitting is mainly attributed to the Rashba effect. However, a Dresselhaus-like contribution also plays a secondary role. Finally, we found that the band gaps and the strength of the Rashba effect can be further tuned through biaxial strain. Our findings indeed show that Pt-based Janus TMDs demonstrate the potential for spintronics applications.

3.
Phys Rev Lett ; 124(3): 036402, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-32031832

ABSTRACT

Platinum ditelluride (PtTe_{2}), a type-II Dirac semimetal, remains semimetallic in ultrathin films down to just two triatomic layers (TLs) with a negative gap of -0.36 eV. Further reduction of the film thickness to a single TL induces a Lifshitz electronic transition to a semiconductor with a large positive gap of +0.79 eV. This transition is evidenced by experimental band structure mapping of films prepared by layer-resolved molecular beam epitaxy, and by comparing the data to first-principles calculations using a hybrid functional. The results demonstrate a novel electronic transition at the two-dimensional limit through film thickness control.

4.
ACS Appl Mater Interfaces ; 11(36): 33012-33021, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31414595

ABSTRACT

Spinel oxides (AB2O4) with unique crystal structures have been widely explored as promising alternative catalysts for efficient oxygen evolution reactions; however, developing novel methods to fabricate robust, cost-effective, and high-performance spinel oxide based electrocatalysts is still a great challenge. Here, utilizing a complementary experimental and theoretical approach, pentavalent vanadium doping in the spinel oxides (i.e., Co3O4 and NiFe2O4) has been thoroughly investigated to engineer their surface structures for the enhanced electrocatalytic oxygen evolution reaction. Specifically, when the optimal concentration of vanadium (ca. 7.7 at. %) is incorporated into Co3O4, the required overpotential to reach a certain jGEOM and jECSA decreases dramatically for oxygen evolution reactions in alkaline media. Even after 30 h of chronopotentiometry, the required potential for V-doped Co3O4 just increases by 16.3 mV, being much lower than that of the undoped one. It is observed that the pentavalent vanadium doping introduces lattice distortions and defects on the surface, which in turn exposes more active sites for reactions. DFT calculations further reveal the rate-determining step changing from the step of *-O to *-OOH to the step of *-OH to *-O, while the corresponding energy barriers decrease from 1.73 to 1.57 eV accordingly after high-valent V doping. Moreover, the oxygen intermediate probing method using methanol as a probing reagent also demonstrates a stronger OH* adsorption on the surface after V doping. When vanadium doping is performed in the inverse spinel matrix of NiFe2O4, impressive performance enhancement in the oxygen evolution reaction is as well witnessed. All these results clearly illustrate that the V doping process can not only efficiently improve the electrochemical properties of spinel transition metal oxides but also provide new insights into the design of high-performance water oxidation electrocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...