Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
EMBO J ; 42(13): e112198, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37278161

ABSTRACT

There is growing evidence that ion channels are critically involved in cancer cell invasiveness and metastasis. However, the molecular mechanisms of ion signaling promoting cancer behavior are poorly understood and the complexity of the underlying remodeling during metastasis remains to be explored. Here, using a variety of in vitro and in vivo techniques, we show that metastatic prostate cancer cells acquire a specific Na+ /Ca2+ signature required for persistent invasion. We identify the Na+ leak channel, NALCN, which is overexpressed in metastatic prostate cancer, as a major initiator and regulator of Ca2+ oscillations required for invadopodia formation. Indeed, NALCN-mediated Na+ influx into cancer cells maintains intracellular Ca2+ oscillations via a specific chain of ion transport proteins including plasmalemmal and mitochondrial Na+ /Ca2+ exchangers, SERCA and store-operated channels. This signaling cascade promotes activity of the NACLN-colocalized proto-oncogene Src kinase, actin remodeling and secretion of proteolytic enzymes, thus increasing cancer cell invasive potential and metastatic lesions in vivo. Overall, our findings provide new insights into an ion signaling pathway specific for metastatic cells where NALCN acts as persistent invasion controller.


Subject(s)
Prostatic Neoplasms , Sodium , Male , Humans , Sodium/metabolism , Ion Channels/metabolism , Ion Transport , Membrane Proteins/genetics , Membrane Proteins/metabolism
3.
Matrix Biol ; 112: 62-71, 2022 09.
Article in English | MEDLINE | ID: mdl-35961423

ABSTRACT

In metazoans, cell adhesion to the extracellular matrix (ECM) drives the development, functioning, and repair of different tissues, organs, and systems. Disruption or dysregulation of cell-to-ECM adhesion promote the initiation and progression of several diseases, such as bleeding, immune disorders and cancer. Integrins are major ECM transmembrane receptors, whose function depends on both allosteric changes and exo-endocytic traffic, which carries them to and from the plasma membrane. In apico-basally polarized cells, asymmetric adhesion to the ECM is maintained by continuous targeting of the plasma membrane by vesicles coming from the trans Golgi network and carrying ECM proteins. Active integrin-bound ECM is indeed endocytosed and replaced by the exocytosis of fresh ECM. Such vesicular traffic is finely driven by the teamwork of microtubules (MTs) and their associated kinesin and dynein motors. Here, we review the main cytoskeletal actors involved in the control of the spatiotemporal distribution of active integrins and their ECM ligands, highlighting the key role of the synchronous (ant)agonistic cooperation between MT motors transporting vesicular cargoes, in the same or in opposite direction, in the regulation of traffic logistics, and the establishment of epithelial and endothelial cell polarity.


Subject(s)
Dyneins , Kinesins , Cell Adhesion , Dyneins/metabolism , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Integrins/genetics , Integrins/metabolism , Ligands
4.
Nat Commun ; 13(1): 4188, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35858913

ABSTRACT

The formation of a functional blood vessel network relies on the ability of endothelial cells (ECs) to dynamically rearrange their adhesive contacts in response to blood flow and guidance cues, such as vascular endothelial growth factor-A (VEGF-A) and class 3 semaphorins (SEMA3s). Neuropilin 1 (NRP1) is essential for blood vessel development, independently of its ligands VEGF-A and SEMA3, through poorly understood mechanisms. Grounding on unbiased proteomic analysis, we report here that NRP1 acts as an endocytic chaperone primarily for adhesion receptors on the surface of unstimulated ECs. NRP1 localizes at adherens junctions (AJs) where, interacting with VE-cadherin, promotes its basal internalization-dependent turnover and favors vascular permeability initiated by histamine in both cultured ECs and mice. We identify a splice variant of tryptophanyl-tRNA synthetase (mini-WARS) as an unconventionally secreted extracellular inhibitory ligand of NRP1 that, by stabilizing it at the AJs, slows down both VE-cadherin turnover and histamine-elicited endothelial leakage. Thus, our work shows a role for NRP1 as a major regulator of AJs plasticity and reveals how mini-WARS acts as a physiological NRP1 inhibitory ligand in the control of VE-cadherin endocytic turnover and vascular permeability.


Subject(s)
Neuropilin-1 , Tryptophan-tRNA Ligase , Adherens Junctions/metabolism , Animals , Antigens, CD , Cadherins/genetics , Capillary Permeability , Endothelial Cells/metabolism , Histamine , Ligands , Mice , Neuropilin-1/genetics , Neuropilin-1/metabolism , Proteomics , Tryptophan-tRNA Ligase/genetics , Vascular Endothelial Growth Factor A/metabolism
5.
Cells ; 11(2)2022 01 14.
Article in English | MEDLINE | ID: mdl-35053395

ABSTRACT

Many nervous proteins are expressed in cancer cells. In this report, we asked whether the synaptic protein neuroligin 1 (NLGN1) was expressed by prostatic and pancreatic carcinomas; in addition, given the tendency of these tumors to interact with nerves, we asked whether NLGN1 played a role in this process. Through immunohistochemistry on human tissue microarrays, we showed that NLGN1 is expressed by prostatic and pancreatic cancer tissues in discrete stages and tumor districts. Next, we performed in vitro and in vivo assays, demonstrating that NLGN1 promotes cancer cell invasion and migration along nerves. Because of the established role of the neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) in tumor-nerve interactions, we assessed a potential NLGN1-GDNF cooperation. We found that blocking GDNF activity with a specific antibody completely inhibited NLGN1-induced in vitro cancer cell invasion of nerves. Finally, we demonstrated that, in the presence of NLGN1, GDNF markedly activates cofilin, a cytoskeletal regulatory protein, altering filopodia dynamics. In conclusion, our data further prove the existence of a molecular and functional cross-talk between the nervous system and cancer cells. NLGN1 was shown here to function along one of the most represented neurotrophic factors in the nerve microenvironment, possibly opening new therapeutic avenues.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Neoplasms/metabolism , Nerve Tissue/metabolism , Actin Depolymerizing Factors/metabolism , Animals , Cell Line, Tumor , Cell Movement , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Mice, Inbred C57BL , Neoplasm Invasiveness , Neoplasms/pathology , Nerve Tissue/pathology , Protein Binding , Pseudopodia/metabolism
6.
J Cell Biol ; 220(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34581723

ABSTRACT

Dynamic modulation of endothelial cell-to-cell and cell-to-extracellular matrix (ECM) adhesion is essential for blood vessel patterning and functioning. Yet the molecular mechanisms involved in this process have not been completely deciphered. We identify the adhesion G protein-coupled receptor (ADGR) Latrophilin 2 (LPHN2) as a novel determinant of endothelial cell (EC) adhesion and barrier function. In cultured ECs, endogenous LPHN2 localizes at ECM contacts, signals through cAMP/Rap1, and inhibits focal adhesion (FA) formation and nuclear localization of YAP/TAZ transcriptional regulators, while promoting tight junction (TJ) assembly. ECs also express an endogenous LPHN2 ligand, fibronectin leucine-rich transmembrane 2 (FLRT2), that prevents ECM-elicited EC behaviors in an LPHN2-dependent manner. Vascular ECs of lphn2a knock-out zebrafish embryos become abnormally stretched, display a hyperactive YAP/TAZ pathway, and lack proper intercellular TJs. Consistently, blood vessels are hyperpermeable, and intravascularly injected cancer cells extravasate more easily in lphn2a null animals. Thus, LPHN2 ligands, such as FLRT2, may be therapeutically exploited to interfere with cancer metastatic dissemination.


Subject(s)
Capillary Permeability/physiology , Cell Adhesion/physiology , Endothelium, Vascular/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Receptors, G-Protein-Coupled/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Animals, Genetically Modified , COS Cells , Cell Line , Cell Nucleus/metabolism , Chlorocebus aethiops , Extracellular Matrix/metabolism , HEK293 Cells , Humans , Signal Transduction/physiology , Trans-Activators/metabolism , Zebrafish
7.
EMBO J ; 39(24): e103661, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33215754

ABSTRACT

Although subcellular positioning of endosomes significantly impacts on their functions, the molecular mechanisms governing the different steady-state distribution of early endosomes (EEs) and late endosomes (LEs)/lysosomes (LYs) in peripheral and perinuclear eukaryotic cell areas, respectively, are still unsolved. We unveil that such differences arise because, while LE retrograde transport depends on the dynein microtubule (MT) motor only, the one of EEs requires the cooperative antagonism of dynein and kinesin-14 KIFC1, a MT minus end-directed motor involved in cancer progression. Mechanistically, the Ser-x-Ile-Pro (SxIP) motif-mediated interaction of the endoplasmic reticulum transmembrane protein stromal interaction molecule 1 (STIM1) with the MT plus end-binding protein 1 (EB1) promotes its association with the p150Glued subunit of the dynein activator complex dynactin and the distinct location of EEs and LEs/LYs. The peripheral distribution of EEs requires their p150Glued-mediated simultaneous engagement with dynein and SxIP motif-containing KIFC1, via HOOK1 and HOOK3 adaptors, respectively. In sum, we provide evidence that distinct minus end-directed MT motor systems drive the differential transport and subcellular distribution of EEs and LEs in mammalian cells.


Subject(s)
Biological Transport/physiology , Endosomes/metabolism , Microtubules/metabolism , Cell Adhesion , Cell Line , Cytoskeleton , Dynactin Complex/metabolism , Dyneins/metabolism , Endoplasmic Reticulum/metabolism , Gene Silencing , Humans , Kinesins/genetics , Kinesins/metabolism , Lysosomes/metabolism , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Neoplasm Proteins , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism
8.
J Cell Sci ; 128(24): 4601-14, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26542021

ABSTRACT

Fascin is an actin-binding and bundling protein that is highly upregulated in most epithelial cancers. Fascin promotes cell migration and adhesion dynamics in vitro and tumour cell metastasis in vivo. However, potential non-actin bundling roles for fascin remain unknown. Here, we show for the first time that fascin can directly interact with the microtubule cytoskeleton and that this does not depend upon fascin-actin bundling. Microtubule binding contributes to fascin-dependent control of focal adhesion dynamics and cell migration speed. We also show that fascin forms a complex with focal adhesion kinase (FAK, also known as PTK2) and Src, and that this signalling pathway lies downstream of fascin-microtubule association in the control of adhesion stability. These findings shed light on new non actin-dependent roles for fascin and might have implications for the design of therapies to target fascin in metastatic disease.


Subject(s)
Carrier Proteins/metabolism , Cell Movement/physiology , Microfilament Proteins/metabolism , Microtubules/metabolism , Carrier Proteins/genetics , Cell Adhesion/physiology , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , HeLa Cells , Humans , Microfilament Proteins/genetics , Microtubules/genetics
9.
J Cell Biol ; 208(7): 987-1001, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25825518

ABSTRACT

Mutations in the essential adaptor proteins CCM2 or CCM3 lead to cerebral cavernous malformations (CCM), vascular lesions that most frequently occur in the brain and are strongly associated with hemorrhagic stroke, seizures, and other neurological disorders. CCM2 binds CCM3, but the molecular basis of this interaction, and its functional significance, have not been elucidated. Here, we used x-ray crystallography and structure-guided mutagenesis to show that an α-helical LD-like motif within CCM2 binds the highly conserved "HP1" pocket of the CCM3 focal adhesion targeting (FAT) homology domain. By knocking down CCM2 or CCM3 and rescuing with binding-deficient mutants, we establish that CCM2-CCM3 interactions protect CCM2 and CCM3 proteins from proteasomal degradation and show that both CCM2 and CCM3 are required for normal endothelial cell network formation. However, CCM3 expression in the absence of CCM2 is sufficient to support normal cell growth, revealing complex-independent roles for CCM3.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Carrier Proteins/metabolism , Cell Proliferation/genetics , Central Nervous System/blood supply , Membrane Proteins/metabolism , Neovascularization, Physiologic/genetics , Proto-Oncogene Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/ultrastructure , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/ultrastructure , Cell Line , Crystallography, X-Ray , Gene Expression , Hemangioma, Cavernous, Central Nervous System/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/ultrastructure , Mutagenesis , Paxillin/metabolism , Protein Binding , Protein Interaction Mapping , Protein Structure, Tertiary , Proteolysis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/ultrastructure , RNA Interference , RNA, Small Interfering , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...