Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Eur J Immunol ; : e2350716, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837757

ABSTRACT

Immune mediators affect multiple biological functions of intestinal epithelial cells (IECs) and, like Paneth and Paneth-like cells, play an important role in intestinal epithelial homeostasis. IFN-γ a prototypical proinflammatory cytokine disrupts intestinal epithelial homeostasis. However, the mechanism underlying the process remains unknown. In this study, using in vivo and in vitro models we demonstrate that IFN-γ is spontaneously secreted in the small intestine. Furthermore, we observed that this cytokine stimulates mitochondrial activity, ROS production, and Paneth and Paneth-like cell secretion. Paneth and Paneth-like secretion downstream of IFN-γ, as identified here, is mTORC1 and necroptosis-dependent. Thus, our findings revealed that the pleiotropic function of IFN-γ also includes the regulation of Paneth cell function in the homeostatic gut.

2.
Life Sci Alliance ; 6(12)2023 12.
Article in English | MEDLINE | ID: mdl-37813486

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis among all human cancers as it is highly resistant to chemotherapy. K-Ras mutations usually trigger the development and progression of PDAC. We hypothesized that compounds stabilizing the KRas4B/PDE6δ complex could serve as PDAC treatments. Using in silico approaches, we identified the small molecules C14 and P8 that reduced K-Ras activation in primary PDAC cells. Importantly, C14 and P8 significantly prevented tumor growth in patient-derived xenotransplants. Combined treatment with C14 and P8 strongly increased cytotoxicity in PDAC cell lines and primary cultures and showed strong synergistic antineoplastic effects in preclinical murine PDAC models that were superior to conventional therapeutics without causing side effects. Mechanistically, C14 and P8 reduced tumor growth by inhibiting AKT and ERK signaling downstream of K-RAS leading to apoptosis, specifically in PDAC cells. Thus, combined treatment with C14 and P8 may be a superior pharmaceutical strategy to improve the outcome of PDAC.


Subject(s)
Antineoplastic Agents , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Antineoplastic Agents/pharmacology , Pancreatic Neoplasms
3.
Cancer Med ; 12(14): 15632-15649, 2023 07.
Article in English | MEDLINE | ID: mdl-37326348

ABSTRACT

INTRODUCTION: Patients with cervical cancer (CC) may experience local recurrence very often after treatment; when only clinical parameters are used, most cases are diagnosed in late stages, which decreases the chance of recovery. Molecular markers can improve the prediction of clinical outcome. Glycolysis is altered in 70% of CCs, so molecular markers of this pathway associated with the aggressiveness of CC can be identified. METHODS: The expression of 14 glycolytic genes was analyzed in 97 CC and 29 healthy cervical tissue (HCT) with microarray; only LDHA and PFKP were validated at the mRNA and protein levels in 36 of those CC samples and in 109 new CC samples, and 31 HCT samples by qRT-PCR, Western blotting, or immunohistochemistry. A replica analysis was performed on 295 CC from The Cancer Genome Atlas (TCGA) database. RESULTS: The protein expression of LDHA and PFKP was associated with poor overall survival [OS: LDHA HR = 4.0 (95% CI = 1.4-11.1); p = 8.0 × 10-3 ; PFKP HR = 3.3 (95% CI = 1.1-10.5); p = 4.0 × 10-2 ] and disease-free survival [DFS: LDHA HR = 4.5 (95% CI = 1.9-10.8); p = 1.0 × 10-3 ; PFKP HR = 3.2 (95% CI = 1.2-8.2); p = 1.8 × 10-2 ] independent of FIGO clinical stage, and the results for mRNA expression were similar. The risk of death was greater in patients with overexpression of both biomarkers than in patients with advanced FIGO stage [HR = 8.1 (95% CI = 2.6-26.1; p = 4.3 × 10-4 ) versus HR = 7 (95% CI 1.6-31.1, p = 1.0 × 10-2 )] and increased exponentially as the expression of LDHA and PFKP increased. CONCLUSIONS: LDHA and PFKP overexpression at the mRNA and protein levels was associated with poor OS and DFS and increased risk of death in CC patients regardless of FIGO stage. The measurement of these two markers could be very useful for evaluating clinical evolution and the risk of death from CC and could facilitate better treatment decision making.


Subject(s)
Phosphofructokinases , Uterine Cervical Neoplasms , Female , Humans , Biomarkers/metabolism , Glycolysis/genetics , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Lactate Dehydrogenase 5/metabolism , Phosphofructokinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Uterine Cervical Neoplasms/genetics
4.
Am J Pathol ; 191(9): 1537-1549, 2021 09.
Article in English | MEDLINE | ID: mdl-34139193

ABSTRACT

Epithelial barrier impairment is a hallmark of several pathologic processes in the gut, including inflammatory bowel diseases. Several intracellular signals prevent apoptosis in intestinal epithelial cells. Herein, we show that in colonocytes, rictor/mammalian target of rapamycin complex 2 (mTORC2) signaling is a prosurvival stimulus. Mechanistically, mTORC2 activates Akt, which, in turn, inhibits apoptosis by phosphorylating B-cell lymphoma 2 (BCL2) associated agonist of cell death (Bad) and preventing caspase-3 activation. Nevertheless, during inflammation, rictor/mTORC2 signaling declines and Akt activity is reduced. Consequently, active caspase-3 increases in surface colonocytes undergoing apoptosis/anoikis and causes epithelial barrier breakdown. Likewise, Rictor ablation in intestinal epithelial cells interrupts mTORC2/Akt signaling and increases apoptosis/anoikis of surface colonocytes without affecting the crypt architecture. The increase in epithelial permeability induced by Rictor ablation produces a mild inflammatory response in the colonic mucosa, but minimally affects the development/establishment of colitis. The data identify a previously unknown mechanism by which rictor/mTORC2 signaling regulates apoptosis/anoikis in intestinal epithelial cells during colitis and clarify its role in the maintenance of the intestinal epithelial barrier.


Subject(s)
Apoptosis/physiology , Colitis/pathology , Epithelial Cells/metabolism , Intestinal Mucosa/pathology , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Animals , Colitis/metabolism , Epithelial Cells/pathology , Intestinal Mucosa/metabolism , Mice , Signal Transduction/physiology
5.
Front Immunol ; 11: 352, 2020.
Article in English | MEDLINE | ID: mdl-32210961

ABSTRACT

Dengue is the most prevalent and rapidly transmitted mosquito-borne viral disease of humans. One of the fundamental innate immune responses to viral infections includes the processing and release of pro-inflammatory cytokines such as interleukin (IL-1ß and IL-18) through the activation of inflammasome. Dengue virus stimulates the Nod-like receptor (NLRP3-specific inflammasome), however, the specific mechanism(s) by which dengue virus activates the NLRP3 inflammasome is unknown. In this study, we investigated the activation of the NLRP3 inflammasome in endothelial cells (HMEC-1) following dengue virus infection. Our results showed that dengue infection as well as the NS2A and NS2B protein expression increase the NLRP3 inflammasome activation, and further apoptosis-associated speck-like protein containing caspase recruitment domain (ASC) oligomerization, and IL-1ß secretion through caspase-1 activation. Specifically, we have demonstrated that NS2A and NS2B, two proteins of dengue virus that behave as putative viroporins, were sufficient to stimulate the NLRP3 inflammasome complex in lipopolysaccharide (LPS)-primed endothelial cells. In summary, our observations provide insight into the dengue-induced inflammatory response mechanism and highlight the importance of DENV-2 NS2A and NS2B proteins in activation of the NLRP3 inflammasome during dengue virus infection.


Subject(s)
Dengue Virus/immunology , Dengue/immunology , Endothelial Cells/physiology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Viral Nonstructural Proteins/metabolism , Viroporin Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Caspase 1/metabolism , Cell Line, Transformed , Dengue/virology , Dengue Virus/pathogenicity , Humans , Immunity, Innate , Interleukin-1beta/metabolism , Viral Nonstructural Proteins/genetics , Viroporin Proteins/genetics , Virulence
6.
Int J Mol Sci ; 20(18)2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31540261

ABSTRACT

The Na+, K+-ATPase transports Na+ and K+ across the membrane of all animal cells. In addition to its ion transporting function, the Na+, K+-ATPase acts as a homotypic epithelial cell adhesion molecule via its ß1 subunit. The extracellular region of the Na+, K+-ATPase ß1 subunit includes a single globular immunoglobulin-like domain. We performed Molecular Dynamics simulations of the ectodomain of the ß1 subunit and a refined protein-protein docking prediction. Our results show that the ß1 subunit Ig-like domain maintains an independent structure and dimerizes in an antiparallel fashion. Analysis of the putative interface identified segment Lys221-Tyr229. We generated triple mutations on YFP-ß1 subunit fusion proteins to assess the contribution of these residues. CHO fibroblasts transfected with mutant ß1 subunits showed a significantly decreased cell-cell adhesion. Association of ß1 subunits in vitro was also reduced, as determined by pull-down assays. Altogether, we conclude that two Na+, K+-ATPase molecules recognize each other by a large interface spanning residues 221-229 and 198-207 on their ß1 subunits.


Subject(s)
Mutagenesis, Site-Directed , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/metabolism , Amino Acid Motifs , Animals , CHO Cells , Cricetulus , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Sodium-Potassium-Exchanging ATPase/genetics
7.
Mol Oncol ; 13(5): 1249-1267, 2019 05.
Article in English | MEDLINE | ID: mdl-30938061

ABSTRACT

Radioresistance of tumor cells gives rise to local recurrence and disease progression in many patients. MicroRNAs (miRNAs) are master regulators of gene expression that control oncogenic pathways to modulate the radiotherapy response of cells. In the present study, differential expression profiling assays identified 16 deregulated miRNAs in acquired radioresistant breast cancer cells, of which miR-122 was observed to be up-regulated. Functional analysis revealed that miR-122 has a role as a tumor suppressor in parental cells by decreasing survival and promoting radiosensitivity. However, in radioresistant cells, miR-122 functions as an oncomiR by promoting survival. The transcriptomic landscape resulting from knockdown of miR-122 in radioresistant cells showed modulation of the ZNF611, ZNF304, RIPK1, HRAS, DUSP8 and TNFRSF21 genes. Moreover, miR-122 and the set of affected genes were prognostic factors in breast cancer patients treated with radiotherapy. Our data indicate that up-regulation of miR-122 promotes cell survival in acquired radioresistant breast cancer and also suggest that miR-122 differentially controls the response to radiotherapy by a dual function as a tumor suppressor an and oncomiR dependent on cell phenotype.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic/radiation effects , Genes, Tumor Suppressor , MicroRNAs/biosynthesis , RNA, Neoplasm/biosynthesis , Radiation Tolerance , Up-Regulation/radiation effects , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Female , Humans , MCF-7 Cells , MicroRNAs/genetics , Neoplasm Proteins , RNA, Neoplasm/genetics
8.
J Immunol ; 202(4): 1239-1249, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30626693

ABSTRACT

A single layer of polarized epithelial cells lining the colonic mucosa create a semipermeable barrier indispensable for gut homeostasis. The role of intestinal epithelial cell (IEC) polarization in the maintenance of the epithelial homeostasis and in the development of inflammatory bowel diseases is not fully understood. In this review, now we report that IEC polarization plays an essential role in the regulation of IL-6/STAT3 signaling in the colonic mucosa. Our results demonstrate that autocrine STAT3 activation in IECs is mediated by the apical secretion of IL-6 in response to the basolateral stimulation with IFN-γ. This process relies on the presence of functional, IFN-γ-producing CD4+ T cells. In the absence of basolateral IFN-γ, the compartmentalization of the IL-6/STAT3 signaling is disrupted, and STAT3 is activated mainly in macrophages. Thus, in this study, we show that during inflammation, IFN-γ regulates IL-6/STAT3 signaling in IEC in the colonic mucosa.


Subject(s)
Colitis/metabolism , Colon/metabolism , Interleukin-6/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Animals , Caco-2 Cells , Cells, Cultured , Epithelial Cells/metabolism , Humans , Inflammation/metabolism , Interferon-gamma/metabolism , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL
9.
Virology ; 527: 146-158, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30529563

ABSTRACT

Calicivirus infection causes intrinsic apoptosis, leading to viral propagation in the host. During murine norovirus infection, a reduction in the anti-apoptotic protein survivin has been documented. Here we report that in feline calicivirus infection, a downregulation of the anti-apoptotic proteins survivin and XIAP occur, which correlates with the translocation of the pro-apoptotic protein Smac/DIABLO from the mitochondria to the cytoplasm and the activation of caspase-3. Inhibition of survivin degradation by lactacystin treatment caused a delay in apoptosis progression, reducing virus release, without affecting virus production. However, the overexpression of survivin caused a negative effect in viral progeny production. Overexpression of the leader of the capsid protein (LC), but not of the protease-polymerase NS6/7, results in the downregulation of survivin and XIAP, caspase activation and mitochondrial damage. These results indicate that LC is responsible for the induction of apoptosis in transfected cells and most probably in FCV infection.


Subject(s)
Apoptosis , Caliciviridae Infections/metabolism , Calicivirus, Feline/physiology , Capsid Proteins/metabolism , Down-Regulation , Survivin/genetics , X-Linked Inhibitor of Apoptosis Protein/genetics , Animals , Caliciviridae Infections/virology , Capsid Proteins/chemistry , Cats , Cell Line , Gene Expression , Host-Pathogen Interactions , Mitochondrial Proteins/metabolism , Protein Transport , Survivin/metabolism , Viral Proteins/biosynthesis , Virus Replication
10.
Article in English | MEDLINE | ID: mdl-30123775

ABSTRACT

Noncoding circular RNAs are widespread in the tree of life. Particularly, intron-containing circular RNAs which apparently upregulate their parental gene expression. Entamoeba histolytica, the causative agent of dysentery and liver abscesses in humans, codes for several noncoding RNAs, including circular ribosomal RNAs, but no intron containing circular RNAs have been described to date. Divergent RT-PCR and diverse molecular approaches, allowed us to detect bona fide full-length intronic circular RNA (flicRNA) molecules. Self-splicing reactions, RNA polymerase II inhibition with Actinomycin D, and second step of splicing-inhibition with boric acid showed that the production of flicRX13 (one of the flicRNAs found in this work, and our test model) depends on mRNA synthesis and pre-mRNA processing instead of self-splicing. To explore the cues and factors involved in flicRX13 biogenesis in vivo, splicing assays were carried out in amoeba transformants where splicing factors and Dbr1 (intron lariat debranching enzyme 1) were silenced or overexpressed, or where Rabx13 wild-type and mutant 5'ss (splice site) and branch site minigene constructs were overexpressed. Whereas SF1 (splicing factor 1) is not involved, the U2 auxiliary splicing factor, Dbr1, and the GU-rich 5'ss are involved in postsplicing flicRX13 biogenesis, probably by Dbr1 stalling, in a similar fashion to the formation of ciRNAs (circular intronic RNAs), but with distinctive 5'-3'ss ligation points. Different from the reported functions of ciRNAs, the 5'ss GU-rich element of flicRX13 possibly interacts with transcription machinery to silence its own gene in cis. Furthermore, introns of E. histolytica virulence-related genes are also processed as flicRNAs.


Subject(s)
Entamoeba histolytica/genetics , Entamoeba histolytica/metabolism , Introns , RNA Splicing , RNA/genetics , RNA/metabolism , Gene Silencing , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA, Circular
11.
Parasit Vectors ; 11(1): 378, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29970133

ABSTRACT

BACKGROUND: Co-circulation of dengue virus (DENV) and chikungunya virus (CHIKV) is increasing worldwide but information on the viral dynamics and immune response to DENV-CHIKV co-infection, particularly in young infants, is scant. METHODS: Blood samples were collected from 24 patients, aged 2 months to 82 years, during a CHIKV outbreak in Mexico. DENV and CHIKV were identified by RT-PCR; ELISA was used to detect IgM and IgG antibodies. CHIKV PCR products were cloned, sequenced and subjected to BLAST analysis. To address serological findings, HMEC-1 and Vero cells were inoculated with DENV-1, DENV-2 and CHIKV alone and in combination (DENV-2-CHIKV and DENV-1-CHIKV); viral titers were measured at 24, 48 and 72 h. RESULTS: Nine patients (38%) presented co-infection, of who eight were children. None of the patients presented severe illness. Sequence analysis showed that the circulating CHIKV virus belonged to the Asian lineage. Seroconversion to both viruses was only observed in the four patients five years or older, while the five infants under two years of age only seroconverted to CHIKV. Viral titers in the CHIKV mono-infected cells were greater than in the DENV-1 and DENV-2 mono-infected cells. Furthermore, we observed significantly increased CHIKV progeny and reduction of DENV progeny in the co-infected cells. CONCLUSIONS: In our population, DENV-CHIKV co-infection was not associated with increased clinical severity. Our in vitro assay findings strongly suggest that the lack of DENV IgG conversion in the co-infected infants is due to suppression of DENV replication by the Asian lineage CHIKV. The presence of maternal antibody and immature immune responses in the young infants may also play a role.


Subject(s)
Chikungunya Fever/epidemiology , Coinfection/epidemiology , Dengue/epidemiology , Virus Replication , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Viral/blood , Chikungunya Fever/blood , Chikungunya Fever/virology , Chikungunya virus/genetics , Chikungunya virus/immunology , Chikungunya virus/isolation & purification , Child , Child, Preschool , Chlorocebus aethiops , Coinfection/blood , Coinfection/virology , Dengue/blood , Dengue/virology , Dengue Virus/genetics , Dengue Virus/immunology , Dengue Virus/isolation & purification , Disease Outbreaks , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Infant , Male , Mexico/epidemiology , Middle Aged , Polymerase Chain Reaction , Serologic Tests , Vero Cells , Young Adult
12.
Oncol Lett ; 15(5): 6777-6783, 2018 May.
Article in English | MEDLINE | ID: mdl-29616136

ABSTRACT

Curcumin is a phytochemical with potent anti-neoplastic properties. The antitumoral effects of curcumin in cells derived from chronic or acute myeloid leukemia have been already described. However, a comparative study of the cytostatic and cytotoxic effects of curcumin on chronic and acute myeloid leukemia cells has not yet been performed. In the present study, the cellular effects of curcumin on cell lines derived from chronic or acute myeloid leukemia were examined. Dose and time-response assays were performed with curcumin on HL-60 and K562 cells. Cell viability was evaluated with trypan blue exclusion test and cell death by flow cytometry using a fluorescent molecular probe. A cell cycle profile was analyzed, and protein markers of cell cycle progression and cell death were investigated. In the present study, the K562 cells showed a higher sensitivity to the cytostatic and cytotoxic effects of curcumin compared with HL-60. In addition, curcumin induced G1 phase arrest in HL-60 cells and G2/M phase arrest in K562 cells. Furthermore, curcumin-related cell death in HL-60 was associated with the processed forms of caspases-9 and -3 proteins, whereas in K562 cells, both the processed and the unprocessed forms were present. Accordingly, activity of these caspases was significantly higher in HL-60 cells compared with that in K562. In conclusion, curcumin elicits different cellular mechanisms in chronic or acute myeloid leukemia cells and the powerful antitumoral effect was more potent in K562 compared with HL-60 cells.

13.
Virus Res ; 247: 94-101, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29452161

ABSTRACT

The HPV-16 E6/E7 bicistronic immature transcript produces 4 mature RNAs: the unspliced HPV-16 E6/E7pre-mRNA product and 3 alternatively spliced mRNAs. The 3 spliced mRNAs encode short forms of the E6 oncoprotein, namely E6*I, E6*II and E6^E7. In this study we showed that transfection of C-33A cells with monocistronic constructs of these cDNAs fused to GFP, produced different effects on apoptosis, after the treatment with cisplatin. Transfection of C-33A cells with the full-length E6-GFP oncoprotein resulted in a 50% decrease in cell death, while the transfection with the E6*I-GFP construct showed only a 25% of diminution of cell death, compared to the control cells. Transfection with the E6^E7-GFP or E7-GFP construct had no effect on the number of the apoptotic cells, compared with control cells. Conversely, transfection with the E6*II construct resulted in higher cell death than the control cells. Taken together, these results suggested that E6*I or E6*II, the short forms of HPV-16 E6, displayed opposite effects on cisplatin-induced apoptosis, when transfected in C-33A cells.


Subject(s)
Alternative Splicing , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cisplatin/pharmacology , Human papillomavirus 16/genetics , Oncogene Proteins, Viral/genetics , Repressor Proteins/genetics , Amino Acid Sequence , Apoptosis/genetics , Cell Line, Tumor , Cervix Uteri/drug effects , Cervix Uteri/pathology , Cervix Uteri/virology , Female , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Human papillomavirus 16/metabolism , Humans , Oncogene Proteins, Viral/metabolism , Plasmids/chemistry , Plasmids/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Repressor Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Transfection
14.
Front Immunol ; 9: 3118, 2018.
Article in English | MEDLINE | ID: mdl-30687322

ABSTRACT

Intestinal macrophages are highly mobile cells with extraordinary plasticity and actively contribute to cytokine-mediated epithelial cell damage. The mechanisms triggering macrophage polarization into a proinflammatory phenotype are unknown. Here, we report that during inflammation macrophages enhance its intercellular adhesion properties in order to acquire a M1-phenotype. Using in vitro and in vivo models we demonstrate that intercellular adhesion is mediated by integrin-αVß3 and relies in the presence of the unconventional class I myosin 1F (Myo1F). Intercellular adhesion mediated by αVß3 stimulates M1-like phenotype in macrophages through hyperactivation of STAT1 and STAT3 downstream of ILK/Akt/mTOR signaling. Inhibition of integrin-αVß3, Akt/mTOR, or lack of Myo1F attenuated the commitment of macrophages into a pro-inflammatory phenotype. In a model of colitis, Myo1F deficiency strongly reduces the secretion of proinflammatory cytokines, decreases epithelial damage, ameliorates disease activity, and enhances tissue repair. Together our findings uncover an unknown role for Myo1F as part of the machinery that regulates intercellular adhesion and polarization in macrophages.


Subject(s)
Colitis, Ulcerative/immunology , Integrin alphaVbeta3/metabolism , Macrophage Activation , Macrophages/immunology , Myosin Type I/metabolism , Animals , Cell Line, Tumor , Colitis, Ulcerative/chemically induced , Cytoskeleton/immunology , Cytoskeleton/metabolism , Dextran Sulfate/administration & dosage , Dextran Sulfate/toxicity , Disease Models, Animal , Humans , Integrin alphaVbeta3/immunology , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myosin Type I/genetics , Myosin Type I/immunology , Primary Cell Culture , RAW 264.7 Cells
16.
Biochem J ; 474(16): 2679-2689, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28666999

ABSTRACT

The mechanisms controlling degradation of cytosolic ß-catenin are important for regulating ß-catenin co-transcriptional activity. Loss of von Hippel-Lindau protein (pVHL) has been shown to stabilize ß-catenin, increasing ß-catenin transactivation and ß-catenin-mediated cell proliferation. However, the role of phosphoinositide 3-kinase (PI3K)/Akt in the regulation of ß-catenin signaling downstream from pVHL has never been addressed. Here, we report that hyperactivation of PI3K/Akt in cells lacking pVHL contributes to the stabilization and nuclear accumulation of active ß-catenin. PI3K/Akt hyperactivation is facilitated by the up-regulation of 14-3-3ζ and the down-regulation of 14-3-3ε, 14-3-3η and 14-3-3θ. Up-regulation of 14-3-3ζ in response to pVHL is important for the recruitment of PI3K to the cell membrane and for stabilization of soluble ß-catenin. In contrast, 14-3-3ε and 14-3-3η enhanced PI3K/Akt signaling by inhibiting PI3K and PDK1, respectively. Thus, our results demonstrated that 14-3-3 family members enhance PI3K/Akt/ß-catenin signaling in order to increase proliferation. Inhibition of Akt activation and/or 14-3-3 function strongly reduces ß-catenin signaling and decreases cell proliferation. Thus, inhibition of Akt and 14-3-3 function efficiently reduces cell proliferation in 786-0 cells characterized by hyperactivation of ß-catenin signaling due to pVHL loss.


Subject(s)
14-3-3 Proteins/biosynthesis , Cell Proliferation/physiology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Up-Regulation/physiology , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , beta Catenin/metabolism , 14-3-3 Proteins/genetics , Animals , Dogs , Humans , Madin Darby Canine Kidney Cells , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , beta Catenin/genetics
17.
Tumour Biol ; 39(3): 1010428317695010, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28345453

ABSTRACT

Radiotherapy is an important treatment option for non-small cell lung carcinoma patients. Despite the appropriate use of radiotherapy, radioresistance is a biological behavior of cancer cells that limits the efficacy of this treatment. Deregulation of microRNAs contributes to the molecular mechanism underlying resistance to radiotherapy in cancer cells. Although the functional roles of microRNAs have been well described in lung cancer, their functional roles in radioresistance are largely unclear. In this study, we established a non-small cell lung carcinoma Calu-1 radioresistant cell line by continuous exposure to therapeutic doses of ionizing radiation as a model to investigate radioresistance-associated microRNAs. Our data show that 50 microRNAs were differentially expressed in Calu-1 radioresistant cells (16 upregulated and 34 downregulated); furthermore, well-known and novel microRNAs associated with resistance to radiotherapy were identified. Gene ontology and enrichment analysis indicated that modulated microRNAs might regulate signal transduction, cell survival, and apoptosis. Accordingly, Calu-1 radioresistant cells were refractory to radiation by increasing cell survival and reducing the apoptotic response. Among deregulated microRNAs, miR-29c was significantly suppressed. Reestablishment of miR-29c expression in Calu-1 radioresistant cells overcomes the radioresistance through the activation of apoptosis and downregulation of Bcl-2 and Mcl-1 target genes. Analysis of The Cancer Genome Atlas revealed that miR-29c is also suppressed in tumor samples of non-small cell lung carcinoma patients. Notably, we found that low miR-29c levels correlated with shorter relapse-free survival of non-small cell lung carcinoma patients treated with radiotherapy. Together, these results indicate a new role of miR-29c in radioresistance, highlighting their potential as a novel biomarker for outcomes of radiotherapy in lung cancer.


Subject(s)
Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , MicroRNAs/genetics , Radiation Tolerance/genetics , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Cell Line, Tumor , Cell Survival/radiation effects , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Lung Neoplasms/mortality , Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis , Neoplasm Recurrence, Local/genetics , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Treatment Outcome
18.
PLoS One ; 11(12): e0169315, 2016.
Article in English | MEDLINE | ID: mdl-28036379

ABSTRACT

The median age of cervical cancer (CC) presentation coincides with the mean age of menopause presentation (49 years) in Mexico. Here, we investigated the association between different HPV16 variants and early (≤ 49 years) or delayed (≥ 50 years) CC presentation. We conducted a case-case study that included 462 CCs, 386 squamous cell carcinomas (SCC), 63 adenocarcinomas (ACC), and 13 additional cell types. Variants were identified by PCR and DNA sequencing. The risk conferred by each variant for developing CC earlier than 50 years was analyzed using a univariate logistic regression model considering old-aged patients (≥ 50 years) and non-HPV16 cases as the reference variables. Overall, the frequency of HPV16 was 50.9%, and the only identified variants were the European A1/2 (31.2%) and the Asian-American D2 (10.8%), and D3 (8.9%). D2 was mainly associated with ≤ 49-year-old patients (15.9%); A1/2 was uniformly distributed between the two age groups (~31%), whereas D3 increased with age to a frequency of 11.8% in the older group. Only the D2 variant conferred a 3.3-fold increase in the risk of developing CC before 50 years of age (OR = 3.3, 95% CI = 1.7-6.6, p < 0.001) in relation with non-HPV16 cases. Remarkably, this risk was higher for ACC (OR = 6.0, 95% CI = 1.1-33, p < 0.05) than for SCC (OR = 2.8, 95% CI = 1.3-5.9, p < 0.01). Interestingly, when analyzing only the HPV16-positive CC, D2 increases (OR = 2.5, 95% CI = 1.2-5, p < 0.05) and D3 decreases (OR = 0.45, 95% CI 0.2-0.9, p < 0.05) the risk to develop CC before 50 years old in relation with A1/2 variant. These results indicated that D2 variant is associated with early and D3 with delayed CC presentation, whereas A1/2 variant was uniformly distributed between the two age groups.


Subject(s)
Adenocarcinoma/virology , Carcinoma, Squamous Cell/virology , Human papillomavirus 16/isolation & purification , Papillomavirus Infections/epidemiology , Uterine Cervical Dysplasia/virology , Uterine Cervical Neoplasms/virology , Adenocarcinoma/diagnosis , Adenocarcinoma/pathology , Adult , Age Factors , Aged , Aged, 80 and over , Base Sequence , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/pathology , DNA, Viral/genetics , Female , Genetic Variation , Human papillomavirus 16/classification , Human papillomavirus 16/genetics , Humans , Mexico/epidemiology , Middle Aged , Papillomavirus Infections/virology , Risk Factors , Sequence Analysis, DNA , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/pathology , Young Adult , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Dysplasia/pathology
19.
PLoS One ; 11(11): e0165971, 2016.
Article in English | MEDLINE | ID: mdl-27832139

ABSTRACT

Curcumin is extensively investigated as a good chemo-preventive agent in the development of many cancers and particularly in leukemia, including treatment of chronic myelogenous leukemia and it has been proposed as an adjuvant for leukemia therapies. Human chronic myeloid leukemia cells (K562), were treated with 20 µM of curcumin, and we found that a subpopulation of these cells were arrested and accumulate in the G2/M phase of the cell cycle. Characterization of this cell subpopulation showed that the arrested cells presented nuclear morphology changes resembling those described for mitotic catastrophe. Mitotic cells displayed abnormal chromatin organization, collapse of the mitotic spindle and abnormal chromosome segregation. Then, these cells died in an apoptosis dependent manner and showed diminution in the protein levels of BCL-2 and XIAP. Moreover, our results shown that a transient activation of the nuclear factor κB (NFκB) occurred early in these cells, but decreased after 6 h of the treatment, explaining in part the diminution of the anti-apoptotic proteins. Additionally, P73 was translocated to the cell nuclei, because the expression of the C/EBPα, a cognate repressor of the P73 gene, was decreased, suggesting that apoptosis is trigger by elevation of P73 protein levels acting in concert with the diminution of the two anti-apoptotic molecules. In summary, curcumin treatment might produce a P73-dependent apoptotic cell death in chronic myelogenous leukemia cells (K562), which was triggered by mitotic catastrophe, due to sustained BAX and survivin expression and impairment of the anti-apoptotic proteins BCL-2 and XIAP.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Curcumin/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , M Phase Cell Cycle Checkpoints/drug effects , Humans , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mitosis/drug effects
20.
Biochem J ; 473(21): 3805-3818, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27538402

ABSTRACT

The gastrointestinal tract is the largest hormone-producing organ in the body due to a specialized cell population called enteroendocrine cells (EECs). The number of EECs increases in the mucosa of inflammatory bowel disease patients; however, the mechanisms responsible for these changes remain unknown. Here, we show that the pro-inflammatory cytokines interferon γ (IFNγ) and tumor necrosis factor α (TNFα) or dextran sulfate sodium (DSS)-induced colitis increase the number of EECs producing chromogranin A (CgA) in the colonic mucosa of C57BL/6J mice. CgA-positive cells were non-proliferating cells enriched with inactive phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and autophagy markers. Moreover, inhibition of Akt and autophagy prevented the increase in CgA-positive cells after IFNγ/TNFα treatment. Similarly, we observed that CgA-positive cells in the colonic mucosa of patients with colitis expressed Akt and autophagy markers. These findings suggest that Akt signaling and autophagy control differentiation of the intestinal EEC lineage during inflammation.


Subject(s)
Chromogranin A/metabolism , Colon/cytology , Cytokines/pharmacology , Epithelium/drug effects , Epithelium/metabolism , Neuroendocrine Cells/drug effects , Neuroendocrine Cells/metabolism , Animals , Autophagy/drug effects , Blotting, Western , Caco-2 Cells , Colitis/metabolism , Fluorescent Antibody Technique , Humans , Interferon-gamma/pharmacology , Interleukin-1beta/pharmacology , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL