Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 120: 104554, 2021 08.
Article in English | MEDLINE | ID: mdl-33932864

ABSTRACT

This article focuses on obtaining ultra high molecular weight polyethylene (UHMWPE) material reinforced with functionalized single-walled carbon nanotubes (f-SWCNTs) and the manufacturing of unicompartmental knee implants via Single-Point Incremental Forming process (SPIF). The physicochemical properties of the developed UHMWPE reinforced with 0.01 and 0.1 wt% concentrations of f-SWCNTs are investigated using Raman and Thermogravimetic Analysis (TGA). Tensile mechanical tests performed in the nanocomposite material samples reveal a 12% improvement in their Young's modulus when compare to that of the pure UHMWPE material samples. Furthermore, the surface biocompatibility of the UHMWPE reinforced with f-SWCNTs materials samples was evaluated with human osteoblast cells. Results show cell viability enhancement with good cell growth and differentiation after 14 incubation days, that validates the usefulness of the developed nanocomposite material in the production of hip and knee artificial implants, and other biomedical applications.


Subject(s)
Knee Prosthesis , Nanotubes, Carbon , Humans , Materials Testing , Polyethylenes , Surface Properties
2.
Mater Sci Eng C Mater Biol Appl ; 112: 110928, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32409077

ABSTRACT

Nanofibers and smart polymers are potentially fascinating biomaterials for the sustained release of therapeutic agents and tissue engineering applications. The current study describes a new class of pH-controlled polycaprolactone/mercaptophenyl methacrylate functionalized carbon nano-onions (PCL/f-CNOs) composite nanofibers by Forcespinning® (FS) with a sustained drug release profile. The morphology and structural characteristics of PCL/f-CNOs nanofibers were scrutinized by Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The morphological results revealed that FS provided homogeneous and bead free nanofibers with average diameters from approximately 215 nm to 596 nm. PCL/f-CNOs composite fibers exhibited pH-responsive release of DOX over 15 days; pH 6.5 showed 87%, and pH 5.0 presented around 99% of DOX release. Drug release measurements showed that the π-π stacking interactions between DOX and f-CNOs have led to a controlled DOX release from forcespun PCL/f-CNOs fibers. Owing to the f-CNOs amalgamation, PCL/f-CNOs fibers unveiled enhanced tensile strength (3.16 MPa) as compared to pristine PCL fibers. It reveals the magnitude of colloidal stability and physisorption of f-CNOs within the PCL matrix. Besides, the in-vitro cell viability was measured with human fibroblast cells, and good viability was observed. Nevertheless, DOX embedded pH-responsive PCL/f-CNOs composite nanofibers may show potential applications in the biomedical research area.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Doxorubicin/chemistry , Drug Carriers/chemistry , Nanofibers/chemistry , Polyesters/chemistry , Antibiotics, Antineoplastic/metabolism , Antibiotics, Antineoplastic/pharmacology , Carbon/chemistry , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Doxorubicin/metabolism , Doxorubicin/pharmacology , Drug Liberation , Humans , Hydrogen-Ion Concentration , Particle Size
3.
Int J Mol Sci ; 21(9)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32354075

ABSTRACT

Nutraceutical combinations that act synergistically could be a powerful solution against colon cancer, which is the second deadliest malignancy worldwide. In this study, curcumin (C), sulforaphane (S), and dihydrocaffeic acid (D, a chlorogenic acid metabolite) were evaluated, individually and in different combinations, over the viability of HT-29 and Caco-2 colon cancer cells, and compared against healthy fetal human colon (FHC) cells. The cytotoxic concentrations to kill 50%, 75%, and 90% of the cells (CC50, CC75, and CC90) were obtained, using the MTS assay. Synergistic, additive, and antagonistic effects were determined by using the combination index (CI) method. The 1:1 combination of S and D exerted synergistic effects against HT-29 at 90% cytotoxicity level (doses 90:90 µM), whereas CD(1:4) was synergistic at all cytotoxicity levels (9:36-34:136 µM) and CD(9:2) at 90% (108:24 µM) against Caco-2 cells. SD(1:1) was significantly more cytotoxic for cancer cells than healthy cells, while CD(1:4) and CD(9:2) were similarly or more cytotoxic for healthy cells. Therefore, the SD(1:1) combination was chosen as the best. A model explaining SD(1:1) synergy is proposed. SD(1:1) can be used as a basis to develop advanced food products for the prevention/co-treatment of colon cancer.


Subject(s)
Caffeic Acids/pharmacology , Colonic Neoplasms/diet therapy , Curcumin/pharmacology , Isothiocyanates/pharmacology , Caco-2 Cells , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Dietary Supplements , Dose-Response Relationship, Drug , Drug Synergism , HT29 Cells , Humans , Sulfoxides
4.
J Mech Behav Biomed Mater ; 104: 103696, 2020 04.
Article in English | MEDLINE | ID: mdl-32174438

ABSTRACT

In the current study, poly 4-hydroxyphenyl methacrylate-carbon nano-onions (PHPMA-CNOs = f-CNOs) are synthesized and reinforced with natural protein gelatin (GL) to engineer GL/f-CNOs composite hydrogels under the sonochemical method. The influence of f-CNOs content on the mechanical properties of hydrogels is examined. Cytotoxicity of hydrogels is measured with the human osteoblast cells. The results revealed good cell viability, cell growth, and attachment on the surface of the hydrogels, and results are f-CNOs dose-dependent. Specifically, the GL/f-CNOs (2 mg/mL) hydrogel showed the highest cell viability, enhanced tensile strength, elastic modulus, and yield strength as compared to pristine GL and GL/f-CNOs (1 mg/mL) hydrogels. It reveals the extent of physisorption and degree of colloidal stability of f-CNOs within the gel matrix. Furthermore, GL/f-CNOs hydrogels efficiently load the 5-fluorouracil (5-FU) and show a pH-responsive sustained drug release over 15 days. Nevertheless, these CNOs based composite hydrogels offer a potential prospect to use them in diverse biomedical applications.


Subject(s)
Carbon , Onions , Gelatin , Humans , Hydrogels , Nanogels
5.
Polymers (Basel) ; 11(12)2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31817694

ABSTRACT

This research focuses on developing a novel ultra high molecular weight polyethylene (UHMWPE) material reinforced with titanium dioxide (TiO 2 ) nanoparticles for producing craniofacial prostheses via an incremental sheet forming process (SPIF). First, UHMWPE-TiO 2 nanocomposite sheets were produced using incipient wetting and the compression molding process by considering different concentrations of TiO 2 nanoparticles. Then, the influence that the compression molding fabrication process has on the crystallinity and structural properties of the produced sample sheets was investigated. Experimental characterizations via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), tensile mechanical testing, and live/dead cell viability assays provided data that show an enhancement of the physical, mechanical, and biological properties. Finally, modifications on the nanocomposite material properties due to the SPIF manufacturing processes of a craniofacial prosthesis are addressed.

6.
J Food Sci ; 82(7): 1726-1734, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28598504

ABSTRACT

Corn lime cooking generates a large amount of wastewater known as nejayote that is composed of suspended solids and solubilized phytochemicals. Spray drying can be an alternative to recover bioactive molecules, such as ferulic acid, from nejayote. Besides the yield, the physicochemical properties (solubility, water activity, pH, moisture, hygroscopicity, total phenolic content, and distribution of free and bound hydroxycinnamic acids) of spray-dried nejayote powders were analyzed. The powders were obtained at 200 °C/100 °C or 150 °C/75 °C (inlet/outlet) air temperatures with the addition of maltodextrin (MD) or 2-hydroxypropyl-beta-cyclodextrin (HBCD) as encapsulating agents. Even when no carrier agent was used, a spray-dried nejayote powder was produced. The use of MD or HBCD as carrier increased the yield from 60.26% to 68.09% or 71.83%, respectively. As expected, a high inlet temperature (200 °C) allowed a satisfactory yield (>70%) and a low powder moisture (2.5%) desired by the industry. Water activity was reduced from 0.586 to 0.307 when HBCD was used in combination with a drying inlet temperature of 150 °C; and from 0.488 to 0.280 when the inlet temperature was set at 200 °C. Around 100% bioaccessibility of the compounds was observed after in vitro digestion. The addition of HBCD increased the release time (P < 0.05). Under simulated physiological conditions, there was no reduction of total phenolics, suggesting a good stability. This paper showed the feasibility to engage the spray drying technology to the corn industry to minimize their residues and reuse their by-products.


Subject(s)
Gastrointestinal Tract/metabolism , Phytochemicals/chemistry , Wastewater/chemistry , Zea mays/chemistry , Desiccation , Hot Temperature , Humans , Models, Biological , Phenols/analysis , Phytochemicals/metabolism , Polysaccharides/analysis , Powders/chemistry , Solubility , Temperature , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...