Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 202(1): 175-191, 2023 May.
Article in English | MEDLINE | ID: mdl-37204497

ABSTRACT

Phylogenetically closely related plant species often share similar trait states (phylogenetic signal), but local assembly may favor dissimilar relatives and thereby decouple the diversity of a trait from the diversity of phylogenetic lineages. Associated fauna might either benefit from plant trait diversity, because it provides them complementary resources, or suffer from it due to dilution of preferred resources. We hence hypothesize that decoupling of trait and phylogenetic diversity weakens the relationship between the plant-trait diversity and the abundance and diversity of associated fauna. Studying permanent meadows, we tested for combined effects of plant phylogenetic diversity and diversity of two functional traits (specific leaf area, leaf dry matter content) on major groups of soil fauna (earthworms, mites, springtails, nematodes). We found that only in phylogenetically uniform plant communities, was uniformity in the functional traits associated with (i) high abundance in springtails, and (ii) high abundance of the sub-group that feeds more directly on plant material (in springtails and mites) or those that are more prone to disturbance (in nematodes), and (iii) high diversity in all three groups tested (springtails, earthworms, nematodes). Our results suggest that soil fauna profits from the resource concentration in local plant communities that are uniform in both functional traits and phylogenetic lineages. Soil fauna would hence benefit from co-occurrence of closely related plants that have conserved the same trait values, rather than of distantly related plants that have converged in traits. This might result in faster decomposition and a positive feedback between trait conservatism and ecosystem functioning.


Subject(s)
Ecosystem , Soil , Phylogeny , Plants , Plant Leaves
2.
Sci Total Environ ; 490: 161-70, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24852614

ABSTRACT

In radioecology, the need to understand the long-term ecological effects of radioactive contamination has been emphasised. This requires that the health of field populations is evaluated and linked to an accurate estimate of received radiological dose. The aim of the present study was to assess the effects of current radioactive contamination on nematode assemblages at sites affected by the fallout from the Chernobyl accident. First, we estimated the total dose rates (TDRs) absorbed by nematodes, from measured current soil activity concentrations, Dose Conversion Coefficients (DCCs, calculated using EDEN software) and soil-to-biota concentration ratios (from the ERICA tool database). The impact of current TDRs on nematode assemblages was then evaluated. Nematodes were collected in spring 2011 from 18 forest sites in the Chernobyl Exclusion Zone (CEZ) with external gamma dose rates, measured using radiophotoluminescent dosimeters, varying from 0.2 to 22 µGy h(-1). These values were one order of magnitude below the TDRs. A majority of bacterial-, plant-, and fungal-feeding nematodes and very few of the disturbance sensitive families were identified. No statistically significant association was observed between TDR values and nematode total abundance or the Shannon diversity index (H'). The Nematode Channel Ratio (which defines the relative abundance of bacterial- versus fungal-feeding nematodes) decreased significantly with increasing TDR, suggesting that radioactive contamination may influence nematode assemblages either directly or indirectly by modifying their food resources. A greater Maturity Index (MI), usually characterising better soil quality, was associated with higher pH and TDR values. These results suggest that in the CEZ, nematode assemblages from the forest sites were slightly impacted by chronic exposure at a predicted TDR of 200 µGy h(-1). This may be imputable to a dominant proportion of pollutant resistant nematodes in all sites. This might result from a selection at the expense of sensitive species after the accident.


Subject(s)
Chernobyl Nuclear Accident , Nematoda/chemistry , Radiation Monitoring/methods , Soil Pollutants, Radioactive/analysis , Soil/chemistry , Animals , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...