Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
EBioMedicine ; 103: 105096, 2024 May.
Article in English | MEDLINE | ID: mdl-38574408

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) susceptibility is influenced by genetic and environmental factors. Previous findings suggest DNA methylation as a potential mechanism in T2D pathogenesis and progression. METHODS: We profiled DNA methylation in 248 blood samples from participants of European ancestry from 7 twin cohorts using a methylation sequencing platform targeting regulatory genomic regions encompassing 2,048,698 CpG sites. FINDINGS: We find and replicate 3 previously unreported T2D differentially methylated CpG positions (T2D-DMPs) at FDR 5% in RGL3, NGB and OTX2, and 20 signals at FDR 25%, of which 14 replicated. Integrating genetic variation and T2D-discordant monozygotic twin analyses, we identify both genetic-based and genetic-independent T2D-DMPs. The signals annotate to genes with established GWAS and EWAS links to T2D and its complications, including blood pressure (RGL3) and eye disease (OTX2). INTERPRETATION: The results help to improve our understanding of T2D disease pathogenesis and progression and may provide biomarkers for its complications. FUNDING: Funding acknowledgements for each cohort can be found in the Supplementary Note.


Subject(s)
CpG Islands , DNA Methylation , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Female , Male , Genome-Wide Association Study , Genetic Predisposition to Disease , Middle Aged , Epigenesis, Genetic , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism , Diabetes Complications/genetics , Gene Expression Profiling
2.
Clin Epigenetics ; 15(1): 166, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37858220

ABSTRACT

BACKGROUND: B vitamins such as folate (B9), B6, and B12 are key in one carbon metabolism, which generates methyl donors for DNA methylation. Several studies have linked differential methylation to self-reported intakes of folate and B12, but these estimates can be imprecise, while metabolomic biomarkers can offer an objective assessment of dietary intakes. We explored blood metabolomic biomarkers of folate and vitamins B6 and B12, to carry out epigenome-wide analyses across up to three European cohorts. Associations between self-reported habitual daily B vitamin intakes and 756 metabolites (Metabolon Inc.) were assessed in serum samples from 1064 UK participants from the TwinsUK cohort. The identified B vitamin metabolomic biomarkers were then used in epigenome-wide association tests with fasting blood DNA methylation levels at 430,768 sites from the Infinium HumanMethylation450 BeadChip in blood samples from 2182 European participants from the TwinsUK and KORA cohorts. Candidate signals were explored for metabolite associations with gene expression levels in a subset of the TwinsUK sample (n = 297). Metabolomic biomarker epigenetic associations were also compared with epigenetic associations of self-reported habitual B vitamin intakes in samples from 2294 European participants. RESULTS: Eighteen metabolites were associated with B vitamin intakes after correction for multiple testing (Bonferroni-adj. p < 0.05), of which 7 metabolites were available in both cohorts and tested for epigenome-wide association. Three metabolites - pipecolate (metabolomic biomarker of B6 and folate intakes), pyridoxate (marker of B6 and folate) and docosahexaenoate (DHA, marker of B6) - were associated with 10, 3 and 1 differentially methylated positions (DMPs), respectively. The strongest association was observed between DHA and DMP cg03440556 in the SCD gene (effect = 0.093 ± 0.016, p = 4.07E-09). Pyridoxate, a catabolic product of vitamin B6, was inversely associated with CpG methylation near the SLC1A5 gene promoter region (cg02711608 and cg22304262) and with SLC7A11 (cg06690548), but not with corresponding changes in gene expression levels. The self-reported intake of folate and vitamin B6 had consistent but non-significant associations with the epigenetic signals. CONCLUSION: Metabolomic biomarkers are a valuable approach to investigate the effects of dietary B vitamin intake on the human epigenome.


Subject(s)
Vitamin B Complex , Humans , Vitamin B 12 , Epigenome , DNA Methylation , Folic Acid , Vitamin B 6 , Biomarkers , Minor Histocompatibility Antigens , Amino Acid Transport System ASC
3.
Genome Biol ; 24(1): 176, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37525248

ABSTRACT

BACKGROUND: Pinpointing genetic impacts on DNA methylation can improve our understanding of pathways that underlie gene regulation and disease risk. RESULTS: We report heritability and methylation quantitative trait locus (meQTL) analysis at 724,499 CpGs profiled with the Illumina Infinium MethylationEPIC array in 2358 blood samples from three UK cohorts. Methylation levels at 34.2% of CpGs are affected by SNPs, and 98% of effects are cis-acting or within 1 Mbp of the tested CpG. Our results are consistent with meQTL analyses based on the former Illumina Infinium HumanMethylation450 array. Both SNPs and CpGs with meQTLs are overrepresented in enhancers, which have improved coverage on this platform compared to previous approaches. Co-localisation analyses across genetic effects on DNA methylation and 56 human traits identify 1520 co-localisations across 1325 unique CpGs and 34 phenotypes, including in disease-relevant genes, such as USP1 and DOCK7 (total cholesterol levels), and ICOSLG (inflammatory bowel disease). Enrichment analysis of meQTLs and integration with expression QTLs give insights into mechanisms underlying cis-meQTLs (e.g. through disruption of transcription factor binding sites for CTCF and SMC3) and trans-meQTLs (e.g. through regulating the expression of ACD and SENP7 which can modulate DNA methylation at distal sites). CONCLUSIONS: Our findings improve the characterisation of the mechanisms underlying DNA methylation variability and are informative for prioritisation of GWAS variants for functional follow-ups. The MeQTL EPIC Database and viewer are available online at https://epicmeqtl.kcl.ac.uk .


Subject(s)
DNA Methylation , Genomics , Humans , CpG Islands , Quantitative Trait Loci , Gene Expression Regulation , Polymorphism, Single Nucleotide , Genome-Wide Association Study/methods
4.
Nat Commun ; 14(1): 2784, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37188674

ABSTRACT

DNA methylation variations are prevalent in human obesity but evidence of a causative role in disease pathogenesis is limited. Here, we combine epigenome-wide association and integrative genomics to investigate the impact of adipocyte DNA methylation variations in human obesity. We discover extensive DNA methylation changes that are robustly associated with obesity (N = 190 samples, 691 loci in subcutaneous and 173 loci in visceral adipocytes, P < 1 × 10-7). We connect obesity-associated methylation variations to transcriptomic changes at >500 target genes, and identify putative methylation-transcription factor interactions. Through Mendelian Randomisation, we infer causal effects of methylation on obesity and obesity-induced metabolic disturbances at 59 independent loci. Targeted methylation sequencing, CRISPR-activation and gene silencing in adipocytes, further identifies regional methylation variations, underlying regulatory elements and novel cellular metabolic effects. Our results indicate DNA methylation is an important determinant of human obesity and its metabolic complications, and reveal mechanisms through which altered methylation may impact adipocyte functions.


Subject(s)
DNA Methylation , Diabetes Mellitus , Humans , Adipocytes/metabolism , Obesity/metabolism , Diabetes Mellitus/metabolism , Genomics , Epigenesis, Genetic
5.
Genome Med ; 14(1): 75, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35843982

ABSTRACT

BACKGROUND: There is considerable evidence for the importance of the DNA methylome in metabolic health, for example, a robust methylation signature has been associated with body mass index (BMI). However, visceral fat (VF) mass accumulation is a greater risk factor for metabolic disease than BMI alone. In this study, we dissect the subcutaneous adipose tissue (SAT) methylome signature relevant to metabolic health by focusing on VF as the major risk factor of metabolic disease. We integrate results with genetic, blood methylation, SAT gene expression, blood metabolomic, dietary intake and metabolic phenotype data to assess and quantify genetic and environmental drivers of the identified signals, as well as their potential functional roles. METHODS: Epigenome-wide association analyses were carried out to determine visceral fat mass-associated differentially methylated positions (VF-DMPs) in SAT samples from 538 TwinsUK participants. Validation and replication were performed in 333 individuals from 3 independent cohorts. To assess functional impacts of the VF-DMPs, the association between VF and gene expression was determined at the genes annotated to the VF-DMPs and an association analysis was carried out to determine whether methylation at the VF-DMPs is associated with gene expression. Further epigenetic analyses were carried out to compare methylation levels at the VF-DMPs as the response variables and a range of different metabolic health phenotypes including android:gynoid fat ratio (AGR), lipids, blood metabolomic profiles, insulin resistance, T2D and dietary intake variables. The results from all analyses were integrated to identify signals that exhibit altered SAT function and have strong relevance to metabolic health. RESULTS: We identified 1181 CpG positions in 788 genes to be differentially methylated with VF (VF-DMPs) with significant enrichment in the insulin signalling pathway. Follow-up cross-omic analysis of VF-DMPs integrating genetics, gene expression, metabolomics, diet, and metabolic traits highlighted VF-DMPs located in 9 genes with strong relevance to metabolic disease mechanisms, with replication of signals in FASN, SREBF1, TAGLN2, PC and CFAP410. PC methylation showed evidence for mediating effects of diet on VF. FASN DNA methylation exhibited putative causal effects on VF that were also strongly associated with insulin resistance and methylation levels in FASN better classified insulin resistance (AUC=0.91) than BMI or VF alone. CONCLUSIONS: Our findings help characterise the adiposity-associated methylation signature of SAT, with insights for metabolic disease risk.


Subject(s)
Insulin Resistance , Body Mass Index , DNA Methylation , Diet , Epigenesis, Genetic , Epigenome , Humans , Insulin Resistance/genetics
6.
Int J Obes (Lond) ; 46(8): 1478-1486, 2022 08.
Article in English | MEDLINE | ID: mdl-35589964

ABSTRACT

BACKGROUND: COVID-19 severity varies widely. Although some demographic and cardio-metabolic factors, including age and obesity, are associated with increasing risk of severe illness, the underlying mechanism(s) are uncertain. SUBJECTS/METHODS: In a meta-analysis of three independent studies of 1471 participants in total, we investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 (ACE2), measured by RNA-Seq, which acts as a receptor for SARS-CoV-2 cellular entry. RESULTS: Lower adipose tissue ACE2 expression was associated with multiple adverse cardio-metabolic health indices, including type 2 diabetes (T2D) (P = 9.14 × 10-6), obesity status (P = 4.81 × 10-5), higher serum fasting insulin (P = 5.32 × 10-4), BMI (P = 3.94 × 10-4), and lower serum HDL levels (P = 1.92 × 10-7). ACE2 expression was also associated with estimated proportions of cell types in adipose tissue: lower expression was associated with a lower proportion of microvascular endothelial cells (P = 4.25 × 10-4) and higher proportion of macrophages (P = 2.74 × 10-5). Despite an estimated heritability of 32%, we did not identify any proximal or distal expression quantitative trait loci (eQTLs) associated with adipose tissue ACE2 expression. CONCLUSIONS: Our results demonstrate that individuals with cardio-metabolic features known to increase risk of severe COVID-19 have lower background ACE2 levels in this highly relevant tissue. Reduced adipose tissue ACE2 expression may contribute to the pathophysiology of cardio-metabolic diseases, as well as the associated increased risk of severe COVID-19.


Subject(s)
Adipose Tissue , Angiotensin-Converting Enzyme 2 , COVID-19 , Adipose Tissue/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/genetics , Cardiometabolic Risk Factors , Diabetes Mellitus, Type 2/genetics , Endothelial Cells/metabolism , Humans , Obesity , SARS-CoV-2
7.
Pharmacology ; 106(11-12): 588-596, 2021.
Article in English | MEDLINE | ID: mdl-34265779

ABSTRACT

INTRODUCTION: Genetic variants could aid in predicting antidiabetic drug response by associating them with markers of glucose control, such as glycated hemoglobin (HbA1c). However, pharmacogenetic implementation for antidiabetics is still under development, as the list of actionable markers is being populated and validated. This study explores potential associations between genetic variants and plasma levels of HbA1c in 100 patients under treatment with metformin. METHODS: HbA1c was measured in a clinical chemistry analyzer (Roche), genotyping was performed in an Illumina-GSA array and data were analyzed using PLINK. Association and prediction models were developed using R and a 10-fold cross-validation approach. RESULTS: We identified genetic variants on SLC47A1, SLC28A1, ABCG2, TBC1D4, and ARID5B that can explain up to 55% of the interindividual variability of HbA1c plasma levels in diabetic patients under treatment. Variants on SLC47A1, SLC28A1, and ABCG2 likely impact the pharmacokinetics (PK) of metformin, while the role of the two latter can be related to insulin resistance and regulation of adipogenesis. CONCLUSIONS: Our results confirm previous genetic associations and point to previously unassociated gene variants for metformin PK and glucose control.


Subject(s)
DNA-Binding Proteins/genetics , Diabetes Mellitus, Type 2/drug therapy , GTPase-Activating Proteins/genetics , Glycated Hemoglobin/genetics , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Transcription Factors/genetics , Adult , Aged , Aged, 80 and over , Blood Pressure , Body Mass Index , Female , Genotype , Glycated Hemoglobin/analysis , Humans , Male , Middle Aged , Organic Cation Transport Proteins/genetics
8.
Genome Biol ; 22(1): 127, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33931130

ABSTRACT

Multiple recent studies highlight that genetic variants can have strong impacts on a significant proportion of the human DNA methylome. Methylation quantitative trait loci, or meQTLs, allow for the exploration of biological mechanisms that underlie complex human phenotypes, with potential insights for human disease onset and progression. In this review, we summarize recent milestones in characterizing the human genetic basis of DNA methylation variation over the last decade, including heritability findings and genome-wide identification of meQTLs. We also discuss challenges in this field and future areas of research geared to generate insights into molecular processes underlying human complex traits.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation , Alleles , Animals , CpG Islands , Databases, Genetic , Gene-Environment Interaction , Genome , Genome-Wide Association Study/methods , Genomics/methods , Humans , Inheritance Patterns , Models, Biological , Organ Specificity/genetics , Quantitative Trait Loci , Quantitative Trait, Heritable
9.
medRxiv ; 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32817962

ABSTRACT

COVID-19 severity has varied widely, with demographic and cardio-metabolic factors increasing risk of severe reactions to SARS-CoV-2 infection, but the underlying mechanisms for this remain uncertain. We investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 ( ACE2 ), which has been shown to act as a receptor for SARS-CoV-2 cellular entry. In a meta-analysis of three independent studies including up to 1,471 participants, lower adipose tissue ACE2 expression was associated with adverse cardio-metabolic health indices including type 2 diabetes (T2D) and obesity status, higher serum fasting insulin and BMI, and lower serum HDL levels (P<5.32x10 -4 ). ACE2 expression levels were also associated with estimated proportions of cell types in adipose tissue; lower ACE2 expression was associated with a lower proportion of microvascular endothelial cells (P=4.25x10 -4 ) and higher macrophage proportion (P=2.74x10 -5 ), suggesting a link to inflammation. Despite an estimated heritability of 32%, we did not identify any proximal or distal genetic variants (eQTLs) associated with adipose tissue ACE2 expression. Our results demonstrate that at-risk individuals have lower background ACE2 levels in this highly relevant tissue. Further studies will be required to establish how this may contribute to increased COVID-19 severity.

10.
J Immunol Res ; 2019: 3974127, 2019.
Article in English | MEDLINE | ID: mdl-31205956

ABSTRACT

Adjuvants are a diverse family of substances whose main objective is to increase the strength, quality, and duration of the immune response caused by vaccines. The most commonly used adjuvants are aluminum-based, oil-water emulsion, and bacterial-origin adjuvants. In this paper, we will discuss how the election of adjuvants is important for the adjuvant-mediated induction of immunity for different types of vaccines. Aluminum-based adjuvants are the most commonly used, the safest, and have the best efficacy, due to the triggering of a strong humoral response, albeit generating a weak induction of cell-mediated immune response. Freund's adjuvant is the most widely used oil-water emulsion adjuvant in animal trials; it stimulates inflammation and causes aggregation and precipitation of soluble protein antigens that facilitate the uptake by antigen-presenting cells (APCs). Adjuvants of bacterial origin, such as flagellin, E. coli membranes, and monophosphoryl lipid A (MLA), are known to potentiate immune responses, but their safety and risks are the main concern of their clinical use. This minireview summarizes the mechanisms that classic and novel adjuvants produce to stimulate immune responses.


Subject(s)
Adjuvants, Immunologic , Aluminum Hydroxide/immunology , Antigens, Bacterial/immunology , Emulsions , Escherichia coli/immunology , Lipid A/analogs & derivatives , Oils , Animals , Humans , Immunity, Cellular , Lipid A/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...