Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 30(31): 315703, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-30893663

ABSTRACT

A lossy dielectric with an appropriate magnetic property is one of the requirements of a stealth material. The thickness of the absorber and the corresponding bandwidth of absorption are also other deciding factors that determine the choice of the material as microwave absorbers. A stable emulsion, which is lossy as well as magnetic, is promising, since it can be coated on surfaces with required thickness in the desired band. A magnetic nanofluidic emulsion serves the purpose. A microwave absorbing emulsion based on natural rubber latex with core-shell magnetic nanoparticles, based on superparamagnetic iron oxide nanoparticles (SPIONs), was developed. The effect of additives like carbon black on the bandwidth of absorption was also studied as a function of weight percentage of carbon black. The complex dielectric permittivity and magnetic permeability were evaluated using a vector network analyser in the S and X bands. Furthermore, these results were modelled using surface impedance equations. These investigations revealed that the incorporation of carbon black enhances the bandwidth of absorption and an emulsion with the required dielectric permittivity and magnetic permeability can be tailored for stealth applications.

2.
Nanotechnology ; 29(26): 265707, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-29624504

ABSTRACT

A liquid dielectric based on a core-shell architecture having a superparamagnetic iron oxide core and a shell of silicon dioxide was synthesized. The frequency dependence of dielectric properties was evaluated for different concentrations of iron oxide. The dependence of magnetic field on the dielectric properties was also studied. Aqueous ferrofluid exhibited a giant dielectric constant of 6.4 × 105 at 0.1 MHz at a concentration of 0.2 vol% and the loss tangent was 3. The large rise in dielectric constant at room temperature is modelled and explained using percolation theory and Maxwell-Wagner-Sillars type polarization. The ferrofluid is presumed to consist of nanocapacitor networks which are wired in series along the lateral direction and parallel along longitudinal direction. On the application of an external magnetic field, the chain formation and its alignment results in the variation of dielectric permittivity.

SELECTION OF CITATIONS
SEARCH DETAIL