Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 14(2): e0007323, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36939339

ABSTRACT

The cytosol of eukaryotic host cells is an intrinsically hostile environment for bacteria. Understanding how cytosolic pathogens adapt to and survive in the cytosol is critical to developing novel therapeutic interventions against these pathogens. The cytosolic pathogen Listeria monocytogenes requires glmR (previously known as yvcK), a gene of unknown function, for resistance to cell-wall stress, cytosolic survival, inflammasome avoidance, and, ultimately, virulence in vivo. In this study, a genetic suppressor screen revealed that blocking utilization of UDP N-acetylglucosamine (UDP-GlcNAc) by a nonessential wall teichoic acid decoration pathway restored resistance to lysozyme and partially restored virulence of ΔglmR mutants. In parallel, metabolomic analysis revealed that ΔglmR mutants are impaired in the production of UDP-GlcNAc, an essential peptidoglycan and wall teichoic acid (WTA) precursor. We next demonstrated that purified GlmR can directly catalyze the synthesis of UDP-GlcNAc from GlcNAc-1P and UTP, suggesting that it is an accessory uridyltransferase. Biochemical analysis of GlmR orthologues suggests that uridyltransferase activity is conserved. Finally, mutational analysis resulting in a GlmR mutant with impaired catalytic activity demonstrated that uridyltransferase activity was essential to facilitate cell-wall stress responses and virulence in vivo. Taken together, these studies indicate that GlmR is an evolutionary conserved accessory uridyltransferase required for cytosolic survival and virulence of L. monocytogenes. IMPORTANCE Bacterial pathogens must adapt to their host environment in order to cause disease. The cytosolic bacterial pathogen Listeria monocytogenes requires a highly conserved protein of unknown function, GlmR (previously known as YvcK), to survive in the host cytosol. GlmR is important for resistance to some cell-wall stresses and is essential for virulence. The ΔglmR mutant is deficient in production of an essential cell-wall metabolite, UDP-GlcNAc, and suppressors that increase metabolite levels also restore virulence. Purified GlmR can directly catalyze the synthesis of UDP-GlcNAc, and this enzymatic activity is conserved in both Bacillus subtilis and Staphylococcus aureus. These results highlight the importance of accessory cell wall metabolism enzymes in responding to cell-wall stress in a variety of Gram-positive bacteria.


Subject(s)
Listeria monocytogenes , Virulence , Cytosol/metabolism , UDPglucose-Hexose-1-Phosphate Uridylyltransferase/metabolism , Cell Wall/metabolism , Uridine Diphosphate/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
PLoS One ; 12(6): e0179574, 2017.
Article in English | MEDLINE | ID: mdl-28658259

ABSTRACT

Immune cells sense and react to a multitude of factors including both host and microbe-derived signals. Understanding how cells translate these cues into particular cellular behaviors is a complex yet critical area of study. We have previously shown that both neutrophils and macrophages are important for controlling the fish pathogen Streptococcus iniae. Here, we report both host and bacterial determinants leading to the formation of organized macrophage aggregates as part of the host inflammatory response in a subset of infected larvae. Streptococcal capsule was a required signal for aggregate formation. Macrophage aggregation coincided with NFκB activity, and the formation of these aggregates is mediated by leukotriene B4 (LTB4) produced by neutrophils. Depletion, inhibition, or genetic deletion of leukotriene A4 hydrolase (Lta4h), which catalyzes the last step in LTB4 synthesis, resulted in the absence of macrophage aggregation. Larvae with impaired neutrophil function also had impaired macrophage aggregation; however, aggregate formation was partially rescued with the addition of exogenous LTB4. Neutrophil-specific expression of lta4h was sufficient to rescue macrophage aggregation in Lta4h-deficient larvae and increased host survival following infection. In summary, our findings highlight a novel innate immune response to infection in which specific bacterial products drive neutrophils that modulate macrophage behavior through eicosanoid signaling.


Subject(s)
Leukotriene B4/metabolism , Macrophages/metabolism , Neutrophils/metabolism , Streptococcal Infections/metabolism , Animals , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Gene Deletion , Immunity, Innate , Inflammation/metabolism , NF-kappa B/metabolism , Streptococcus iniae , Zebrafish
3.
PLoS Pathog ; 12(11): e1006001, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27806131

ABSTRACT

Obstacles to bacterial survival and replication in the cytosol of host cells, and the mechanisms used by bacterial pathogens to adapt to this niche are not well understood. Listeria monocytogenes is a well-studied Gram-positive foodborne pathogen that has evolved to invade and replicate within the host cell cytosol; yet the mechanisms by which it senses and responds to stress to survive in the cytosol are largely unknown. To assess the role of the L. monocytogenes penicillin-binding-protein and serine/threonine associated (PASTA) kinase PrkA in stress responses, cytosolic survival and virulence, we constructed a ΔprkA deletion mutant. PrkA was required for resistance to cell wall stress, growth on cytosolic carbon sources, intracellular replication, cytosolic survival, inflammasome avoidance and ultimately virulence in a murine model of Listeriosis. In Bacillus subtilis and Mycobacterium tuberculosis, homologues of PrkA phosphorylate a highly conserved protein of unknown function, YvcK. We found that, similar to PrkA, YvcK is also required for cell wall stress responses, metabolism of glycerol, cytosolic survival, inflammasome avoidance and virulence. We further demonstrate that similar to other organisms, YvcK is directly phosphorylated by PrkA, although the specific site(s) of phosphorylation are not highly conserved. Finally, analysis of phosphoablative and phosphomimetic mutants of YvcK in vitro and in vivo demonstrate that while phosphorylation of YvcK is irrelevant to metabolism and cell wall stress responses, surprisingly, a phosphomimetic, nonreversible negative charge of YvcK is detrimental to cytosolic survival and virulence in vivo. Taken together our data identify two novel virulence factors essential for cytosolic survival and virulence of L. monocytogenes. Furthermore, our data demonstrate that regulation of YvcK phosphorylation is tightly controlled and is critical for virulence. Finally, our data suggest that yet to be identified substrates of PrkA are essential for cytosolic survival and virulence of L. monocytogenes and illustrate the importance of studying protein phosphorylation in the context of infection.


Subject(s)
Cell Wall/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Homeostasis/physiology , Listeria monocytogenes/pathogenicity , Listeriosis/metabolism , Virulence Factors/metabolism , Virulence/physiology , Animals , Blotting, Western , Disease Models, Animal , Mass Spectrometry , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests
4.
Dev Cell ; 38(2): 161-9, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27459068

ABSTRACT

Cell motility is required for diverse biological processes including development, homing of immune cells, wound healing, and cancer cell invasion. Motile neutrophils exhibit a polarized morphology characterized by the formation of leading-edge pseudopods and a highly contractile cell rear known as the uropod. Although it is known that perturbing uropod formation impairs neutrophil migration, the role of the uropod in cell polarization and motility remains incompletely understood. Here we discuss cell intrinsic mechanisms that regulate neutrophil polarization and motility, with a focus on the uropod, and examine how relationships among regulatory mechanisms change when cells change their direction of migration.


Subject(s)
Cell Membrane Structures/physiology , Cell Movement/physiology , Cell Polarity/physiology , Neutrophils/physiology , Pseudopodia/physiology , Cell Adhesion , Humans
5.
Cell Microbiol ; 18(4): 591-604, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26468080

ABSTRACT

The inflammasome is an innate immune complex whose rapid inflammatory outputs play a critical role in controlling infection; however, the host cells that mediate inflammasome responses in vivo are not well defined. Using zebrafish larvae, we examined the cellular immune responses to inflammasome activation during infection. We compared the host responses with two Listeria monocytogenes strains: wild type and Lm-pyro, a strain engineered to activate the inflammasome via ectopic expression of flagellin. Infection with Lm-pyro led to activation of the inflammasome, macrophage pyroptosis and ultimately attenuation of virulence. Depletion of caspase A, the zebrafish caspase-1 homolog, restored Lm-pyro virulence. Inflammasome activation specifically recruited macrophages to infection sites, whereas neutrophils were equally recruited to wild type and Lm-pyro infections. Similar to caspase A depletion, macrophage deficiency rescued Lm-pyro virulence to wild-type levels, while defective neutrophils had no specific effect. Neutrophils were, however, important for general clearance of L. monocytogenes, as both wild type and Lm-pyro were more virulent in larvae with defective neutrophils. This study characterizes a novel model for inflammasome studies in an intact host, establishes the importance of macrophages during inflammasome responses and adds importance to the role of neutrophils in controlling L. monocytogenes infections.


Subject(s)
Flagellin/immunology , Inflammasomes/metabolism , Listeria monocytogenes/immunology , Macrophages/immunology , Zebrafish/immunology , Animals , Disease Models, Animal , Listeriosis/immunology , Listeriosis/pathology , Neutrophils/immunology , Pyroptosis
6.
Nature ; 511(7509): 353-7, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-25030174

ABSTRACT

Corneal epithelial homeostasis and regeneration are sustained by limbal stem cells (LSCs), and LSC deficiency is a major cause of blindness worldwide. Transplantation is often the only therapeutic option available to patients with LSC deficiency. However, while transplant success depends foremost on LSC frequency within grafts, a gene allowing for prospective LSC enrichment has not been identified so far. Here we show that ATP-binding cassette, sub-family B, member 5 (ABCB5) marks LSCs and is required for LSC maintenance, corneal development and repair. Furthermore, we demonstrate that prospectively isolated human or murine ABCB5-positive LSCs possess the exclusive capacity to fully restore the cornea upon grafting to LSC-deficient mice in xenogeneic or syngeneic transplantation models. ABCB5 is preferentially expressed on label-retaining LSCs in mice and p63α-positive LSCs in humans. Consistent with these findings, ABCB5-positive LSC frequency is reduced in LSC-deficient patients. Abcb5 loss of function in Abcb5 knockout mice causes depletion of quiescent LSCs due to enhanced proliferation and apoptosis, and results in defective corneal differentiation and wound healing. Our results from gene knockout studies, LSC tracing and transplantation models, as well as phenotypic and functional analyses of human biopsy specimens, provide converging lines of evidence that ABCB5 identifies mammalian LSCs. Identification and prospective isolation of molecularly defined LSCs with essential functions in corneal development and repair has important implications for the treatment of corneal disease, particularly corneal blindness due to LSC deficiency.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP-Binding Cassette Transporters/metabolism , Limbus Corneae/cytology , Limbus Corneae/physiology , Regeneration , Stem Cells/metabolism , Wound Healing , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/deficiency , ATP-Binding Cassette Transporters/deficiency , Animals , Apoptosis , Biomarkers/metabolism , Cell Differentiation , Cell Proliferation , Female , Humans , Male , Mice , Mice, Knockout , Molecular Sequence Data , Stem Cell Transplantation , Stem Cells/cytology , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
7.
Antimicrob Agents Chemother ; 58(8): 4486-94, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24867981

ABSTRACT

While ß-lactam antibiotics are a critical part of the antimicrobial arsenal, they are frequently compromised by various resistance mechanisms, including changes in penicillin binding proteins of the bacterial cell wall. Genetic deletion of the penicillin binding protein and serine/threonine kinase-associated protein (PASTA) kinase in methicillin-resistant Staphylococcus aureus (MRSA) has been shown to restore ß-lactam susceptibility. However, the mechanism remains unclear, and whether pharmacologic inhibition would have the same effect is unknown. In this study, we found that deletion or pharmacologic inhibition of the PASTA kinase in Listeria monocytogenes by the nonselective kinase inhibitor staurosporine results in enhanced susceptibility to both aminopenicillin and cephalosporin antibiotics. Resistance to vancomycin, another class of cell wall synthesis inhibitors, or antibiotics that inhibit protein synthesis was unaffected by staurosporine treatment. Phosphorylation assays with purified kinases revealed that staurosporine selectively inhibited the PASTA kinase of L. monocytogenes (PrkA). Importantly, staurosporine did not inhibit a L. monocytogenes kinase without a PASTA domain (Lmo0618) or the PASTA kinase from MRSA (Stk1). Finally, inhibition of PrkA with a more selective kinase inhibitor, AZD5438, similarly led to sensitization of L. monocytogenes to ß-lactam antibiotics. Overall, these results suggest that pharmacologic targeting of PASTA kinases can increase the efficacy of ß-lactam antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Listeria monocytogenes/drug effects , Penicillin-Binding Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Cell Wall/drug effects , Cell Wall/metabolism , Cephalosporins/pharmacology , Gene Deletion , Imidazoles/pharmacology , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/metabolism , Penicillins/pharmacology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pyrimidines/pharmacology , Staurosporine/pharmacology , Vancomycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...